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ABSTRACT

-

The pickup and delivery problem (PUDP) represents a class of

-

sequencing or routing problems where the key facet of the routing is

that a pickup must precede the corresponding, subscquent delivery.
Other considerations such as service time windows, quality of service

Iy

parameters or opcrational constraints on cither the driver o. the

vehicle are possible. As such, the PUDP is a constrained version of

le o o adue - -

the ubiquitous travelling salcsman problem (TSP), which seeks a

. minimum cost route that from an initial point visits cach city or

| stop oncc and only once, ending at the initial stop. There are also
similarities between the PUDP and the much studied vchicle routing

| problem (VRP), although the two problems are distinctly different

' because of the origin preceding destination requirement.

The TSP and VRP literature is extensive, offering J‘SE theory and
algorithms for the solution of these problems. Given the similarities
of thesec problcms to the PUDP, those algorithms that performed well on
TSP's and VRP's arc discussed in detail and scrved as the basis for
developing both exact and heuristic algorithms to solve the PUDP.

- +Assuming that all problem constraints arc expressable in terms of
stop numbers along a vehicle's route, dynamic programming can be used
to optimally solve the problem. The algorithm Jdeveloped is signifi-
cantly more powerful on heavily constrained problem instances than any
other known technique. Solutions to problems in excess of 45 customers

(equivalent to a 91 city TSP) arec solved on an IBM 3031 computer in a

. s i
11
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mattor of seconds. The efficiency is achieved by only generating

feasible state spagg vectors, thus greatly reducing the storage and

execution requirements. The same dynamic progrumming algorithm is also
used to solve the multiple vehicle PUDP but with less impressive
results.'\Other exact techniques could not be effectively used on the
PﬁbP'du!/;ri;arily to the precedence requirement.

 Heuristic algorithms were also developed and tested. Most of the
algorithms commonly used to solve the related TSP and PUDP perform
poorly on the PUDP, often producing solutions as much as 50% above
optimal. \An interchange (3-optimal) heuristic consistently produced
superior r?sults for the single vehicle PUDP. Solutions averaging
within 1% of optimal were obtained for heavily constrained problem
instances, !

- The multiple vehicle problem is significantly more complex than
is the single vehicle problem. Results for the multiple vechicle
problem were acceptable but inconclusive. Consequently, the multiple

vehicle area is judged to be the most promising arca for future

research.
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ABSTRACYT

The pichup and delivery problem (PUDP) represents a class of
sequencing or routing problems where the hey facet of the routing is
that a pichup must precede the corresponding, subscquent delivery.
Othcr considerations such as service time windows, quality of scrvice
parameters or operational constraints on cither the driver or the
vehicle are possible.  As such, the PUDE is g constrained version of
the ubiquitous travelling salesman problem (FSP), which sechs a
minimum cost route that from an anitial point vasits cach city or
stop once and only once, ending at the imtial stop. Jhere are also
similarities between the PUDE and the much studied vehacle roating
problem (VRP), althou:h the two problems are distainctly difterent
because of the origin preceding destination requirement.,

The TSP and VRP literature s extensive, oftering both theory and
algorithms for the solution of these problems.  Given the similaritices
of these problems to the PUIE, those algorsthms that performed well on
ISP's and VRIP's are discussed in detarl and served as the basis for
developing both exact and heuristic algorithms to solve the PO,

Assuming that all problem constraints arce eapressable in terms of
stop numbers along a vehicle's route, dynamic programming can be used 1
to optimally solve the problem. The algorithm developed is signifi-
cantly more powerful on heavily constrained problem instances than any
other hnown technique. Solutions to problems in excess of 45 customers

tequivalent to a 91 city TSP) arc solved on an IBM 3031 computer in a
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matter of seconds. The etticiency is achieved by only gencrating
feasible state space vectors, thus greatly reducing the storage and
exccution requirements. The same dynamic prograsming algorithm is also
used to solve the multiple vehicle PUDE but with less impressive
results. Other exact techniques could not be effectively used on the
PUDP d.i¢ primarily to the precedence requirement,

Houristic algorithms were also developed and tested. Most of the
algorithms commonly used to solve the related ISP and PUDE perform
poorly n the PUDP, often producing solutions as much as 50 above
optimal. An interchange (S-optimal) heuristic consistently produced
superh v results for the single vehicle PUDE,  Solutions averaging
within % of optimal were obtained for heavily constrained problem
instanc:s,

The multiple vehicle problem 1s sigmificantly more complea than
1s the single vehicle problem.  Results tor the multiple vehicle
problem were acceptable but anconclusive.  Conscquently, the multiple
vehicle arca 1s judged to be the most promising area for tuture

rescarch. '
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CHAPTER
OVERVIEW OF THL PICKUP AND DELIVERY PROBLEM
1. PROBLEM CLASSIFICATION

The pickup and delivery problem (PUDP) represents a class of
sequencing or routing problems where the hey facet of the routing is
that a pickup must precede the corresponding, subsequent delivery.
Many other constraints are possible based on the particular applica-
tion. As such, the pickup and delivery problem is a constrained
version of the basic, much studied travelling salesman problem (TSP).
The travelling salesman problem sceks to find a minimum cost path
that from an initial point, visits cach city or stop once and only
once, ending at the initial stop. Morce rigorous definitions arce
provided below and in Chapter 11.

The vehicle routing problem (VRP) is also a constrained version
of the TSP. In the vehicle routing problem the key consideration is
vehicle capacity, although, as with the PUDP, other constraints may be
applicable. It is not correct to classify the PUDP as a further
constrained vehicle routing problem. Vehicle capacity need not be a
factor in the PUDP. Given that capacity is a consideration, the
manner in which it affects the problem is significantly different

between the two problems. Conscquently, it appears the proner classi-

fication is to treat both problems as constrained versions of the TSP,
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The PUDP is representative of several practical routing

situations. Examples includc dial-a-ride services and courier services.

Notwithstanding, few articles devoted to the PUDP have appeared in the
published literature. This is in sharp contrast to the literature
devoted to the TSP and the VRP which is voluminous and extends over the
last quarter century. All evidence suggests that the PUDP is a

relatively unexplored subject area.

11. PROBLEM DESCRIPTION

The dial-a-ride service (DARS) offers a convenient means of
conceptualizing the PUDP. Suppose that an organization provides
transportation services for the handicapped. Vechicles must pick up

these people at their individual origins and take them to their desti-

nations. Return trips somctime later in the day are also possibilitics.

The objective is to satisfy all requests for service as cconomically
as possible. In addition to the origin-destination (0/D) constraint,
other intuitively appealing constraints may include:

1. A limitation on the number of passengers who can occupy the
vehicle at any one time (capacity constraint);

2. A limitation on the amount of time that any onc passcnger must
remain in the vehicle (quality of service constraint);

3. A range of times in which pickup and/or delivery must be made
(time window constraint);

4, A requirement that the same driver provide both legs of a

rerson's round trip (stop-back constraint);
I p I




] S. Limits on the total distunce that a vehicle may be driven

(operational constraint).

I11.  PROBLEM SIGNIFICANCE

As mentioned above, the PUIW is representative of real world

routing situations. Fisher and Jaikumar (l10) estimated that urban

delivery vehicles in 1975 travelled approximately 70 tillion miles at
a fuel cost in excess of $5.5 billion. Fuel costs have more than
doubled in the last five years. Consequently, annual fuel costs for
urban deiivery vehicles in excess of $10 billion is clearly probable.
The percentage of urban vehicles engaged in services that could be
classified as fitting the pickup and delivery model is not known,
However, were the figurc as low as 5%, a figure in excess of $500

million is obtained.

Dial-a-ride services are playing an increasingly important role
in urban public transportation. Such scrvices for the handicapped,
! or transportationally disadvantaged, are available in nearly every
American city, cither provided by the public, by charitable organi-
zations, or by volunteers. Unquestionably, a 5% improvement in route
efficiency would produce a tremendous savings in both dollars and ‘
barrels of oil.
Experience with the vehicle routing problem suggests savings of
from 5% to 10% are possible bv applying fairly simple computer assisted
- algorithms to route the vehicles. Because the PUDP is inherently

morc complex, it appears less likely that a dispatcher, acting without




benefit of some algorithm, could producce a good route. Consequently,

even a greater savings percentage appears possible for the PULP.

IV. RELATIONSHIP TO THE TSP AND THE VRP

There are similarities as well as differences among the PUDP, the

TSP, and the VRP. Since the TSP and VRP have been cxtensively investi-

gated, exploitation of the similarities was a logical coursc of action.

1]
!
% Let G = {N,A,C} be a complete network with N representing the sect

1 of nodes, A the set of arcs, and C = [Cij] a matrix of costs represcnt-

ing the cost of going from node i to node j. A Hamiltonian cycle is a

cycle that passes through cach node ieN exactly once. The TSP is the

problem of finding a least cost Hamiltonian cycle on G. The multiple

travelling salesman problem (MISP) requires that for m salesmen one

find m cycles on G such that every i¢N is visited exactly once and

the total cost of the m cycles is minimal.

If we further constrain the MISP by requiring that for uny cycle
! or tour the capacity (in weight, volume...) of the corresponding
vehicle cannot be exceeded, the resulting problem is the VRP. Although
other constraints, such as time-windows or stop-backs, are possible,

very few articles address them cven in passing. One notable cxception

is the paper by Fisher and Jaikumar (10), which explicitly considers
the timc-window constraints.

In none of these problem definitions is there any mention of a
requirement that one stop be visited before another. Incorporating

this procedence relationship, required to define the PUDP, complicates
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the TSP or MTSP much more than docs capacity. The PUDP is considered

more complicated and at least as difficult as any of thesc related

- — e - . e e

problems,

-

> V. PROBLEM DIFFICULTY

-

The TSP has becn shown to be NP-complete (12). One consequence
of this classification is that there is no known polynomial time
algorithm that optimally solves it, despite hundreds of man-ycars

devoted to finding onc. If one could find a polynomial time algorithm

.\-; .c.-‘.?.'&_.';..l

for any cne of the more than 300 NP-complcte problems, onc could solve
all problems in NP in polynomial time. As the following lemma shows,
the PUDP is at least as hard as the TSP. If a polynomial time
algorithm exists that solves the PUDP, it could be used to solve the
TSP in polynomial time. This in turn implies that it could be uscd to
solve all of the other NP-complcte problems. Conscquently, the likeli-
hood of anyone finding a polynomial time algorithm for the PULP is not

{ considered high.

[ Lemma 1
Unless P = NP, there does not exist a polynomial time algorithm

that optimally solves the gencral PUDP,

Proof

It will be shown that onc instance of the PUDP can be reduced to

- two travelling salesmen problems. Since the TSP is NP-complet. and
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cannot be solved in polynomial time unless P = NP, this implies that the
PUDP can not be solved in polynomial time unless P = NP,

Consider the instance where all origins arc to be visited before
lunch, all destinations after lunch, and the driver must return to thce
depot for lunch. Clearly the optimal solution for the PUDP is the
optimal seqyuencing over the set of origins coupled to the optimal
sequencing over the set of destinations. But these optimal solutions
are the TSP solutions taken over their respective sets. lience, unless
P = NP, a polynomial time algorithm for the gencral PUDP does not

exist.
VI. RESEAPCH WESTIONS

The TSP and VRP literature .ffers an abundance of thcory and
algorithms for the solution of ‘ seir respective problems. Given
the similariries between tl.: 1JDP and the VRP and TSP, one would suspect
that many of thc samec algorit! »s could be used for the PUDP. To
what extent and how well remained to be determined. Conscquently, this
research was guided by the following three general questions:

1. Using what algorithms, and under what conditions, can the
PUDP be cfficiently solved optimally?
2. How well do heuristics commonly applied to related problems

-

perform?

3. Which hcuristics (s) provide the best PUDP solutions?
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VII. ORGANIZATION

Chapter 1] provides a review of the literature pertinent to the
pickup and delivery, travelling salesman, and vehicle routing problems.
Those algorithms, both cxact and heuristic which have been successfully
applied to the TSP and the VRP are developed in detail,

In Chapter 11, a detailed mathematical formulation for the PULP
is presented. The formulation provides the insight necessary to
explain why some of the algorithms developed in Chapter Il do not work
efficiently when applied to the PUDP, while others do.

Chapter IV deals with the optimal solution to the single vchicle
problem. A dynamic programming solution is developed which is extremely
powerful when applied to highly constrained PUDP instances. The same
dynamic programming model is also used to solve the multiple vehicle
PUDP discussed in Chapter V1. Lxact solutions other than by the
dynamic programming approach are shown to be much more difficult to
obtain for the PUDP than for the TSP,

Single vehicle heuristics are discussed in Chapter V. Many of the
heuristics that are widely appliced to the VRP are shown to pcrform
poorly on the PUDP, especially when side constraints become more
binding. Special attention is given to those instances of the PUDP
for which the dynamic programming technique provides an optimal
solution. This allows for a precisc evaluation of how well a given

heuristic performs. Only relative performance has previously been

possible for all but extremely small vehicle routing problems. 1
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The multiple vehicle PUDP, discussed in Chapter VI, 1s seen to be
a most difficult problem. The precedence requirements render ineffi-
cient the hecuristic determined to be the most powerful for the single
vehicle problem. Further, the additional alternatives available due to
more than one vehicle being available for customer assignment destroy
the efficiency of the dynamic programming technique. MHeuristics that
proved somewhiat successful as well as those that failed arc detailed.
When failure is encountercd, an explanation is offered.

During the period of the research, many areas ripe for research
were cncountered. Practical limitations on available time precluded
investigation of thesc opportunitics as a part of this effort.

Chapter V11, therefore, details scveral of the more interesting arcas

remaining to be explored.
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CHAPTER 1]
LITERATURE REVIEW

The pickup and delivery problem (PUDP) has beea classified as a
constrained version of the travelling salesman problem (TSP). The
vehicle routing problem (VRP) is also a constrained TSP. Any attempt
to solve the PUDP must, therefore, logically begin with an examination
of thosc algorithms successfully used in solving these two related
problems. This chapter summarizes the results of such an examination.
The few articles directly relating to the PUDP are also discussed.

The travelling salesman probiem and the related vehicle routing
problem are two of the most studied problems in operations rescarch.
Literally hundreds of algorithms, many representing minor modifications
of others, have been proposcd for their solution. It would neither be
practical nor uscful to attempt to address all of these algorithms.
Rather, a morc useful approach suggests discussing the basic approaches
and underlying concepts of those techniques that have shown the

greatest success in solving the TSP,

. MATHEMATICAL FORMULATION

Travelling Salesman Problem

A word description of the TSP was presented in Chapter I,

Specifically, the TSP secks to minimize

9




! subject to:

) 2 X = 1 s j=1,2,....,n (2.2}
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¥; arbitrary real number i = 1,2,...,n o0
where,
clj = cost of going directly from city 1 to 3, and
{l. if the salesman goes directly from city 1 to ¢i1ty g
X.. =
i .
' ] 10, otherwisc,

-

Expressions (2.2) and (2.3) insurc that the <alesman visits and
departs from cach city exactly once. lapressions (2.9) and (2.6) arc

the subtour-climination conditions derived originally by Miller,

Tucker and Zemlin (26) and often quoted by others,

Another common cxpression for climinating subtours js

) ) x.. > 1 (2.6.11
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for every nonempty proper subset Q of N, where Q is the complement of
Q. Bellmore and Malone (2) showed that this formulation, which is of
order 2" leads to an effective solution algorithm by branch and bound.
The branch and bound algorithm, as well as other solution approaches,
is discussed later in this chapter,

Although the former formulation is more compact than the latter,
both express the problem precisely in mathemitical notation. The
compact formulation is perhaps more elegant and may be of value compu-
tationally it the constraints must be explicitly considered.  The less
compact tormulation is somcetimes more advantageous if the constraints
arc implicitly handled. For the purpose of defining the TSP, either
1s satisfactory. For the rescarch discussed later, there is no compu-
tational prefercence for one notation over the other. However, the
morc compact tormulation 1s used throughout simply because it is

notationally more clegant.

}MItivuijlglthuuLSJlcw%gtjwvhlcm

The muitiple travelling salesman problem (MISPY can be casily
transformed into a standard ISP, Suppose there are M salesmen.
M copies of the origin are included in the cost matrix € = [cii], with
cach of the copies representing a unique stop but with the same costs
relative to the other nodes as the origin has.  The M copies arce
connected with arcs of intfinite (or extremely large) cost so that it is

never profitable to include one of these arcs in a solution. the

resulting solution to the ISP taken over this expanded network provides




1.

y the solution tuv the MISP. Consequently, subseyuent discussion on the

‘ TSP is equally appiicable to the more penceral MISP,

Vehicle Routing P'roblem

The VRP formulation is similar to the TSP formulation except that

' it is necessary to include the number of vehicles, K, sinto the formula-

- tion primarily to define the capacity constraints, Qk' for cach vehicle.
1
X! Each customer has a requircment, r.- An anteger programming formulation

for the VRP is:

-9
-t
-~

minimize

Ll ]
.
bd
ts
l

subject to
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‘1) L0, 11 , for vvery ¢, ) and k (2.14)
N arbitrary real namber, 1= 1,2,...,n {2.15)

where
{ . .

. 1, 1t vehiicle b visits custoner ) ammediately after

’ . . .

ATy = visiting customer i

- 0, otherwise,

tany uf these eapressions are logical extensions of those for the
TSP, Lxpression (2.9) requires that 1f a vehicle visits a customer, it
must depart from this same locatior. Lxpressions (2.10) and (2.11)
represent the capacity and operational limitations of the kth vehicle,
while (2.12) insures that a vehicle must be used once and only once.
The formulation given above 1s refered to hereafter as the standard VR,

Other constraints, such as delivery windows, are scldom addressed
at all. Onc notable cxception is the paper by Fisher and Jaikumar
{101, which explicitly consaders the delivery time window constraints.
Therr formulation is much more complex and 1s, therctore, not inciuded

here.

. LXACT ALGORTHIMS

Finding cxact solutions to all but relatively small (less than 50
cities) travelling salesman problems has proven to be a difficult tash,
Lxact solutions to the vehicle routing problem arc much more difticult

to come by. Christofides was credited with claiming that the largest

vehicle routing problem of any complexity that had heen solved exactly
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irvolved only 23 customers (18). Christofides subsequently reports
optimal solutions of VRP's of up to about 30 customers (4). The reason
for these difficulties is the exponential growth in computations
required to guarantce optimality.

Four approaches for finding exact TSP solutions will be discussed.
These techniques are integer programming by means of cutting planes,
branch and bound based on subtour elimination, dynamic programming,
and Lagrangcan relaxation using minimum I-treces. None of these
approaches are new, the most recent introduced to the literature in
1970 (21). In addition, a Benders decomposition approach for solving

the vehicle routing problem will be outlined.

Integer Programming

Other than the integrality conditions on X in expressions (2.5)

and (2.14) the above formulations allow for solution by ordinary linear

programming (LP). Suppose these conditions are relaxed to

(U xij < 1 for cvery i,j . (2.16)

The LP solution will not generally be intcegral. However, it is

possible to add additional constraints to the final LP tablcau to
eventually obtain integrality. These additional constraints are called
cutting plancs. Garfinkel and Nemhauser (13) provide a treatment of the
theory of cutting planes. The original theory of cutting planes is due

mainly to Gomory (19).
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The basic idea of a cutting plane algorithm is to "cut away,"
using hyperplanes, the noninteger portions of the feasible convex hull
of the relaxed linear program. These hyperplanes are constraints that
can be gencrated at each step from the current LP tableau, and taken in
such a manner that no feasible, integer solutions are ignored.

Finite cutting plane algorithms have been proposed and used to
sulve the TSP, as well as other integer programming problems. For the
most part they have not performed well, the exception being the recent
work of Miliotis (25). Fisher and Jaikomar (10) in their VRP algorithm
use the Miliotis cutting plane algorithm to solve TSP subproblems with

impressive results.

Branch and Bound

Branch and bound techniques are by far the most common type applied
to the TSP, especially those employing a subtour elimination scheme.
Expressions (2.1), (2.2), (2.3) and (2.5) taken separately define the
assignment problem (AP) — the objective being the most efficient assign-
ment of n men to n distinct jobs. The assignment problem, a relaxation
of the TSP, is easily solved in polynomial time. Since the AP is a
relaxation of the TSP, the optimal solution to the AP, which is most
generally not feasible to the TSP, provides a lower bound on the
optimal valuec of the TSP solution. Any feasible TSP solution provides
an upper bound. If the AP solution is not feasible to the TSP, becausec

of subtours, onec branches into k subproblems, where k is the number of

arcs in onc of the subtours. In cach subproblem, one of the k original
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subtour arcs is assigned an infinite cost, this breaking or eliminating
the subtour. The k new AP's are then solved, bounds computed, and the
process repeated if subtours are present and the lower bound is less
than the best feasible tour as yect found., Eventually, one is assured
of finding the optimal solution, although the size of the branching
tree may become enormous for large problems.

The approach outlined above represents one method of using branch
and bound techniques to solve the TSP. The key to the success of a
branch and bound algorithm rests with obtaining very tight bounds, thus
greatly reducing the size of the branching tree, and with branching
rules, which also minimize the resulting tree size. Branch and bound
algorithms often find optimal or near optimal solutions toward the
beginning of the enumeration. Thus, much of the time required by the
algorithm is spent in verifying the optimality of a tentative solution.
Consequently, branch and bound techniques can often be terminated early,
producing a very good solution. In this sense, the technique is uscd
as a heuristic. Most cutting plane algorithms do not have this

characteristic.

Uynamic Programming

Dynamic programming has been used less on the TSP than some other
techniques. It does not appear that dynamic programming has been used
with any success on the VRP. The computer storage requirements are the

primary limiting factor. LEven though the dynamic programming recursions

allow for treating combinations rather than permutations of the
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operations required, the combinations increasec exponentially with the
1 {
. 4 size of the problem. Consequently, core storage requirements to solve
! a 20 city TSP exceed 900,000 words.
‘! The basic dynamic programming recursion to determine a shortest
;; partial TSP tour from the origin (node 1) to node j that passes
r
‘ l . I
j through i, i2,..., lk-l is
4
¥
f: fk(jllx,lz,..., i, )) = min [fk_l(lmllx,lg,...,lm_l,lm+1,...,lk_1)
b m=1,... k-1
! MUTINE (2.17)
m
By letting
S = tindz,eenyip o} (2.18)
we can simplify (2.17) to obtain
]
| £, (15 = m;nlfk_l(lmlﬁk S v (2.19)

The initial recursive equation thus becomes

£,GGli) = cr,in + I for all iy , 0 # 1 and i, # i, (1.20)

while the final, which terminates with an optimal tour value, is

obtained by solving

fn(xlsn) = m;n[fn_l(imlﬁn - i) e Ciml] . (2.21)




The number of fk values is given by

to
[ ]
[ "]
—

3 g(n,k) = (n-1)! / (k-1)!(n-k-1)! (

} which reaches a maximum halfway through the computations.

The procedurc for determining the optimal tour is a two phase one.

i
'J First, fk’ k =2,3,...,n arc computed recursiv 'ly by (2.10). Then

the optimum ordering (il,iz,...,in) is obtained by picking the im such

that (2.10) holds in decreasing order of k, k = n, n-1, n-2,...,2.

Lagrangean Technique

One of the most powerful techniques fer solving the symmetric TSP

is the l-tree approach of Held and Karp (22,23). A TSP is symmetric if

= ’ H H Al b
Cij Cji for cvery i,j . (2.23)

A l-tree is a tree taken over vertices 2,3,...,n, connected to vertex

1 with two edges. A TSP tour is a l-tree for which ecach vertex has

i degree 2. Figure 1 depicts a l-trec over 8 vertices. A minimum weight
1-tree can be found by first finding a minimum spanning treec over the
vertex set {2,3,...,n}, and then adding the two lcast cost edges at

vertex 1. The minimum spanning tree is easily solved in order n time.

Changing the cost matrix for intercity distances by

~

cij = Cij omo nj (2.24)

does not alter the optimal solution to the TSP but does alter the




Figure 1.

An example of a l-tree.

¢
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solution of the minimum l-trec. An iterative method for approaching

the optimal solution from below is based on altering the " and nj's so
that each vertex is forced toward degree 2. Normally, the algorithm
must employ branch and bound to obtain the final TSP tour. However,

as Held and Karp note the bounds computed by the final minimum l-trces
v, . .are so sharp that the search trees are miniscule compared to thosc
normally encountered. . . ." Consequently, the l-tree approach could be
considered a branch and bound algorithm that uses a Lagrangean
relaxation to compute tight lower bounds. It is important to note

that the technique is only valid for the symmetric travelling salesman
problem.

Christofides, Mingozzi, and Toth have extended Held and Karp's
Lagrangean relaxation concept to the VRP (4). It is this work for which
sulutions up to 30 customers are reported. The key factor allowing for
success is again tight bounds computed by similar Lagrangean penalty

or relaxation procedures.

Benders Decomposition

One solution technique (10) for the VRP, which specifically
addresses delivery windows, employs Benders decomposition., The
algorithm iterates between a generalized assignment problem (GAP) to
assign customers to vehicles such that vehicle capacity is not exceeded,
and a TSP subproblem for scquencing the stops. As mentioned above, a

cutting plane algorithm is used to solve the TSP, Infeasible sub-

problems produce the Benders cuts needed to obtain delivery window
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feasibility on subsequent iterations. Computational results remain

incomplete, but appear promising.

Fisher and Jaikumar comment that although their algorithm will
produce an optimal solution in a finite number of iterations, they
expect that for practical size problems the algorithm will be used as
a heuristic. This is accomplished by terminating the iterations prior
to achieving optimality and using the best feasible solution found thus
far.

The upper limit on the size of a general TSP that can be optimally
solved, within practical limits on time and computer storage, by any
known technique is questionable, but certainly is not greater than 100
cities and is probably less. For the VRP, this limit is significantly
lower. For problem instances of such size that obtaining an optimal
solution is impractical, heuristic solutions provide the only alterna-

tive.

I1T. HEURISTIC ALGORITHMS

A multitude of heuristic algorithms have been pronosed for both
the TSP and the VRP. Many heuristics for the VRP are just slight modi-
fications of ones used for the TSP. The heuristics to be discussed
fall into onc of thrce broad classes: tour construction approaches,
tour improvement approaches, and composite approaches. The latter is

the logical combination of the first two. [Pach class, and the common

representatives of each, will be cxamined.




Tour Construction Heuristics

Tour construction algorithms generate a tour, one stop at a time,
from the given distance or cost matrix. When constraints are present,
as in the VRP, the next stop 1s added to the partially constructed tour
only if it can lead to a feasible final solution. With the VRP, this
would normally be a check to insure that vehicle capacity had not been
exceeded, a relatively simple procedure. Insuring feasibility with
delivery windows is a much more complicated procedure and may, to
some extent, explain why such constraints are not treated in the
literature.

By far the most common ot the tour construction procedures is the
Clarke-Wright savings algorithm which dominates VRP solution attempts.
Others include the necarest neighbor or greedy approach and various
insertion approaches. Since the literature for the \'RP indicate the
general superiority of the Clarke-Wright models over other tour con-

struction heuristics, they will be discussed first.

Clarke-khright savings, The basic concept of the travel time saved

heuristic was developed by Clarke and Wri, t (7}, who credited the
carlier work of bantzig and Ramser (8). In both cases, the procedure
was developed to solve the VRP.  Numerous modifications have been
suggested, but the underlying concept remains invariant (I, 28, 38

The procedure begins by sclecting one node as the origin.,  With

the VRP, no choice is required.  Initially one assumes that every Stup

is visited directly from the origin.  Then the savings that can be




achieved by combining two subtours into one, by linking stops i and j,

is computed by

ij T 1t Sy 7 Cij . 2.25
; 51) €1i Cl) cl) ( )
: Beginning with the largest of these savings values, routes are
N assembled such that the next stop added has the largest remaining
t
' savings — provided that a constraint is not violated. Customers that
{
' )

have been linked are treated as a single macro customer. Figure 2
demonstrates the algorithm for two stops i and j. Once a pair of stops

has been linked, they remain linked. The algorithm continues until all

.
stops have been assigned.
Most commercially available algorithms for routing vehicles are
lt_ based on the Clarke-Wright savings concept. Survey results iadicate

a percentage in cxcess of 80%, including the IBM code, VSPX, which is
the most used package in Awerica (18). Empirical evidence suggests
that, on average, the Clarke-Wright savings method produces vechicle
routes that are as good as, and often better than, routes produced by
other heuristics for the standard VRP. Christofides and Eilon (6)
obtained an average deviation of 3.2% from optimal on 10 small vehicle
routing problems.

One of the attempts to improve the Clarke-Wright model jis by
modification of the savings equation. Yellow (13) sugppested a route

shape parameter A such that the cquation is

D T LA G . (2.20)
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(a) Before linking (b)y After linking

Figure 2. Concept of the Clarke-Wright
savings heuristic,
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Varying the parameter o+ alters the emphasis placed on the cost between

stops 1 oand }oin relation to their costs relative to the central depot.

shen o= 1, Yellow’s model reduces to the Clarke-Wright model.
Pvpocatly, several values of 0 are tried, including - = 1. Thererore,
Yellow's method always produces at least as good result us the

Clarke-hright technigue.

Il lman and Cochran (39) and Tillman and Cain {38) sugpested
another approach based on extending the savings calculations to more
than one stop in the future. Although their combined reported works
are limited to two choices in scequence, the concept is eatendable to
three or more in sequence.  However, the possible combinations are of

order n , where » s the number of positions exarined. Therefore, this

procedure rapidly becomes expensive in terms of computational ctffort.

Nearest neighbor.  The nearest neighbor procedure 1s the simplest
and perhaps most naive ot all heuristics sugpested.  One alwayvs
selects the nearest unvisited, feasible stop until the tour 1s com-
pleted.  Because of the way in which the algorithm works, it is often
referred to as a greedy alporithn.  The primary appeal of the greedy
approach is its <simplicity. It i< ecasily understood and large problems

can casily he solved by hand. Unfortunately, the precdy approach does

not normally produce "pood' tours for cither the ISP or the VRP.

In~ertion procedures.  An insertion procedure uses a specitic

sclection rule to pick a stop not yvet in the partial <olution and then

determines where to insert this stop. Three common types of selection
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criteria for the next stop to be included are ncarest, farthest,
and random, with reference to any once of the nodes included in the
partial tour. lInsertion is accomplizhed for node h by finding arc
(i,j) in the subtour which minimizes
ik T Sk T iy (2.27)

subject to the problem constraints, if any. Computational experience
indicates results within 3-5% of optimial or best known solution arce

attainable with insertion algorithms (17).

Tour Improvement christ[ﬁi

The basic idea behind tour improvement procedures is to take o
given feasible tour and systematically modity the tour to obtain a
better one.  The procedure is one of arc interchange. ’Iwo related
heuristics have worked well on the TSP and the VRP:  the r-optimal

heuristic and the Y-optimal hearistic of Lin and Kermighan (121).

r-optimal, The concept of r-optimality 1< an outgrowth of rescarch
on the TSP, Christofides and Lilon (61 appear to have been the first
to apply the voncept to the vehicle routing problem, with results at
least as good as thosce obtained using the Clarke-Wright approach,
the term r-optimal implics that no improvement in a given teasibic
solution is possible by elhimminating any r links and replacing them by

r new links.  In other words, the procedure terminates at a local

: . . . r .
optimum. The r-optimal procedure is an O(n ) algorithm, Consequently,
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only 2-optimal and 3-optimal interchanges have been used for the TSP
and VRP, Larger values of r could be used and would result in at least
as good a solution since r optimality implies r-1 optimality. However,
the increased computational cost could apparently not be justified.
Christofides and Eilon suggest that a 3-optimal algorithm first
find a 2-optimal tour and then use this tour as the input to the
3-optimal algorithm. Figure 3 shows the only legitimate reconnection
pattern for the l-optimal algorithm and the five reconnection patterns
for the 3-optimal algorithm which exclude duplication of a 2-optimal
pattern. In Figure 3, the letters represent the arcs that are removed
and the numbers represent the specific stops that are to be reconnected,
Initially, the stops arc visited in numerical scequence, with inter-
vening stops unnumbered. The heavy lines represent all intervening
stops between cach of the two endpoints; the dotted lines the single
arc removed; and the remaining lines the new arcs.  The patterns do not
depend on whether the network is directed or undirected.  However, in
the directed case, some of the patterns may be infeasible due to the

nonexistence of an arc in the reverse direction.

*-optimal. Closely related to the r-optimal procedure is the
d-optimal technique of Lin and Kernighan., The ‘-optimal heuristic
was developed to solve the 1S and does so with remarkable rosults,
The probability of optimally solving a given 30 city TSP is reportedly

close to one, while an optimal solution to a 100 city TSP is

reported at close to 25%.
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Figure 3. Two and 3-optimal reconnection patterns.




e —

4o X

29

The A-optimal approach works essentially in the same manner as does
the r-optimal approach except that A is not fixed at any step of the
iteration process. Rather, for each iteration, X starts at a valuc of
2, i.e., two arcs are initially removed and a 2-optimal solution found.
Then a third arc is removed and a 3-optimal solution found. Additional
arcs are incrementally removed until no further feasible improvement
in total tour cost can be made. Consequently, four, five or even more
arcs may be removed at one time. With five arcs removed, the algorithm
is searching for a better solution than the current 4-optimal one,

The algorithm insures that if an arc is removed, a feasible reconnection
pattern does exist, thus precluding investigation of profitable, but
infeasible reconnection patterns. The creation of separate subtours

is an ecxample of an infcasible recconnection pattern.

Composite lleuristics

A composite procedure constructs an initial tour using one of the
tour construction techniques and then attempts to improve on this
solution using a tour improvement technique. Since the composite will
always do at least as well 4s the tour construction algorithm without
improvement, the question of whether to use a composite is one of
accuracy desired and resources available. Several unique composite
approaches have been suggested, specifically for application to the

VRP. Two of these are of special interest to the material developed

in later chapters.
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Sweep algorithm. The sweep algorithm, developed by Gillett and

Miller (15), employs the Lin-Kernighan algorithm to sequence stops on
cluster generated routes. Other models of the vehicle routing problem
can be characterized as solving one big problem. Gillett and Miller
use a technique which divides the big problem into k subproblems,
where k is the number of vehicles.

The algorithm orders all delivery points sequentially by their
polar coordinate angle and then selects routes by sweeping through the
angles. Points are not added if one of the constraints would be
violated. An exchange routine is applied to the resultant route
structure to obtain any additional route improvement. The sweep and
improvements are accomplished in both a forward and a backward direction
with the best result taken as the final solution. Gillett and Miller
recommended and used the Lin-Kernighan algorithm for the improvement
step. They claim that problems well in excess of 100 customers are
computationally feasible with their sweep algorithm, and solutions are

very competative with other solution approaches.

MIQUR. MTOUR is the name given to an algorithm developed by
Russell (36) to solve constrained multiple travelling salesman problems
or constrained VRP's., The additional constraint is a delivery window
or a due date requirement. Russell solves the multiple problem as a
single problem on an extended network, as discussed above, using the

Lin-Kernighan approach.
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As with all of the tour improvement heuristics, an initial

feasible solution is required. In the more heavily constrained
environment, such a starting solution may not be obvious. In the more
constrained problem, the feasibility of arc interchanges greatly
complicates the A-optimality procedures. Notwithstanding, Russell is
one of the few who does address the time window constraint and he
reports good success in using his MIOUR on his test problems.

The heuristics discussed here are not intended to be exhausive,
However, they do represent the basic concepts and approaches that
have been successfully applied to the TSP and to the VRP., Art .cles
devoted specifically to the class of problems described by the

pickup and delivery problem arc far less numerous.
IV. PUDP RELATED LITERATURE

Two articles and one working paper discuss subject areas that
fall within the framework of the PUDP model. Only the article by
Psaraftis (34) is considered significant to the research effort. A

brief summary of the other two is presented before Psaraftis's article

is discussed in more detail.

Single Vehicle PUDP

In their 1979 unpublished paper, Driscoll and Emmons (9) discuss
routing of a single vchicle to meet pickup and delivery requirements.

The only problem constraint is that a pickup must precede a subsequent

delivery. The vchicle is taken to have unlimited capacity. Driscoll




Ao

YR IPYINR sech
Y el vt acaden e -

32

and Emmons propose a heuristic that employs a 2-optimal algorithm. All
origins are 2-optimal sequenced, and then all destinations are
2-optimal sequenced. Finally, the two lists are joined, and a final

2-optimal sequence is formed.

Dial-a-Ride Systems

Stein (37) presents an investigation of the quality of any
proposed heuristic in a theoretical, asymptotic, probabilistic sensec.
No specific solution is offered. All of the results cited implicitly

assume vehicles of unlimited capacity.

Dynamic Programming and Dial-a-Ride

The May 1980 edition of Transportation Science includes the article

by Psaraftis that outlines the use of dynamic programming to optimally
solve the single vehicle, many-to-many, immediate-recquest dial-a-ride
problem. This article appearcd subsequent to the research reported in
latter chapters, and in no way influenced that work.

The term many-to-many is used to imply that the pickup points and
the delivery points of the individual customers are all distinct points.
Immediate-request is used to imply that every customer wishes to be

serviced as soon as possible. The article addresses both the static

and the dynamic cases. Static implies that no additional requests for

service can be satisfied by the single vehicle once it begins servicing

customer requests.
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Objective. Psaraftis uses an objective function that is a weighted
combination of total service time for all customers and of the total
service time for all customers and of the total dissatisfaction experi-
enced by customers in waiting to be picked up and awaiting delivery at
their respective destinations. A more conventional objective function
could be substituted without altering the algorithm. A maximum
position shift (MPS) limits the absolute difference between the order
in which a customer is served on the route developed and the position
a customer held on a first come first serve list. This "position"
orientation to the problem is well suited for solution by dynamic
programming. The precedence, MPS and capacity constraints are all

taken care of as the recursive procedure develops.

State vector. To define the state space, a state vector
(L,k;,kz,...,kw) is used where L represents the point or stop the vchicle
1
is currently visiting, N is the number of customers and kj is the status

of the jth customers such that

kj = 3: customer j has yet to be picked up,
kj = 2: customer j is in the vehicle, and
kj = 1: customer j has been delivered.

A series of screening steps are used to determine if a particular state
vector is feasible or not. Onec of the screening procedures requires,
for cach state, examining subscquent or next states recachable from the

current state vector in order to determine if the present vector can be i

fecasibly extended. The current state vector, tentatively classified as !
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feasible, is reclassified as infeasible if all subsequent states are

determined to be infeasible. Consequently, much of the computational

requirement involves these screening procedures.

Storage requirements. Psaraftis’' dynamic programming algorithm

1

- N- . .
requires a minimum of 2 N 3 storage locations, where N is the number
of customers. For example, for 15 customers a total of over 430 million
storage locations would be required. As actually implemented, Psaraftis'

algorithm would require in excess of 1 billion storage locations to

solve a 15 customer problem.

Computational results. The algorithm runs as an exponential

function of the size of the problem (number of customers), but is shown
to be asymptotically more efficient than dynamic programming applied
to the travelling salesman problem. The largest problem reported on
irvolved nine customers or 18 specific stops and required nearly 600
seconds to solve. Slight improvements in running times were noted as
the MPS and capacity values were decreased, thus making the problem
more heavily constrained. The amount of improvement betwecen an uncon-
strained problem and a fully constrained problem (pickup followed by
immediate delivery of each customer in first come first serve order)
was less than 75%.

The algorithm as constructed can only be used to solve a single
vehicle dial-a-ride problem. Tt appears to be practically limited to

problems of nine customers or less due to storage and execution reguire-

ments. In Chapter IV, a different dvnamic programming algorithm is 1




developed. This dynamic programming algorithm is much more powerful

than Psaraftis' is on the more heavily constrained problem. Solutions

to problems of well over 50 customers are readily attainable. The

algorithm also can be used to solve the multiple vehicle problen.

Ll




CHAPTER 111

MATHEMATICAL FORMULATION
1. MEMORY REQUIREMENT

In Chapter I a word picturc of the pickup and delivery problem
(PUDP) was presented. The key problem facet was scen to be the prece-
dence relationship, requiring an origin be visited before its corre-
sponding destination, Chapter Il includes the mathematical formulations
of the related travelling salesman and vehicle routing problems. These
formulations are not directly extendable to describe the PUDP. The
precedence relationship and any capacity restrictions preclude such an
extension,

In order to definc the precedence relationship as well as many of
the other suggested, possible constraints for the PUDP, it is necessary
to include in the model a memory to keep track of the sequence or timing
of the stops. Identifying the sequence of stops is recquired to insure
that a destination is not sequenced before its origin. Guaranteeing
that time windows, quality of service standards and cspecially the
vehicle capacity limitations are met, are examples of the other
constraints that are time or sequence dependent. The memory provision
can be achieved by incorporating integral time periods into the model.
The time period approach is mandatory if an integer linear programming

formulation to include the capacity constraint is desired.

36




IT. NOTATION

The following notation will be employed through the remainder of

this chapter:

L

L/2

n+l

number of nodes. L equals the number of origins plus
number of destinations plus one for ecach vehicle's
starting and ending point. Lach item's or person's
origin and destination is assigned a unique node.
Consequently, if one specific location were to serve as
a destination and a multiple origin of multiplicity m,
with each origin having a different destination, m+l
distinct nodes would be required. There would be zero
cost between cach of these m+l nodes. The depot from
which all vehicles are dispatched is assigned stop
number 1.

number of origin/destination pairs.

# vchicles.

the total number of distinct points,

set of origins,

set of destinations.

number of vechicles.

capiacity of the kth vehicle,

a vector whose 1th component represents the amount or

quantity to be moved from origin i to destination ls+n.

We assume r, = 1 1e0 for the DARS,
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cost of direct travel from stop i to stop j. The cost can
be distance, time or other suitable measure.
travel time from stop i to stop j. Since travel time may

be a valid meuasurc of cost, it is possible that ¢ip =1

i
for all i and j. However, it is not necessary that any
specific relationship exist between these values,
earliest time that stop 1 (cither a customer's oripin or
destination) can be serviced. The value can either be

expressed in terms of clock time or by a period number.

latest time that stop i can be serviced, expressable in same

manner as e..
maximum allowable time between pickup and delivery for the
jth customer requirement. Qi can cither be expressed in
clock time or by the number of intervening periods.
upper limit on the distance or other appropriate measure
of operational limits for the kth vehicle.

I, if vehicle k procceds directly trom stop i to stop 1,
where j is the vehicle's tth stop,

0, otherwise.

clock time at which customer stop i is visited., 1t is

assumed that the starting time is assigned a zero time.

a scalar taken to be targer than the length of any feasibile

tour.

set of time periods,




1TE.  TOUR CONTINUITY CONSTRAINTS

As with the multiple travelling salesman and the vehicle routing
problems, the total of all individual tours must incorporate all N
stops. Because of the parameter t in the formulation, these construaints
can be expressed more compactly than they can be by using the more
conventional constraints. As betore, compactness is preferred only tor

mathematical elegance.

Conventional Constraints

Expressions similar to those for the travelling salesman and vehicle
routing problems can be used to force tour continujty tor the PUBP,  The

problem is

Co - k

minimize ' [\ G |
. gt
ijtk :

subject to
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e{0,1} for all i,j,t and k (3.6}

| Yy arbitrary recal number. (3.7)

Expression (3.2) requires thiat every stop be visited exactly once,

o

while (3.3) states that if vehicle k visits a given stop, it must also
- . .
o depart from it. EIxpression (3.d) insures that no vehicle is used more
t
B than once. The subtour elimination equations {3.5) are an cxtension
w4y of those proposed by Miller, Tucker and Zembin for the the travelling

salesman problem (20). The number of decision variables is of order
KNY. It should be noted that with the eaception of the addition of the 1
period subscript on the decision variable x, (3.1} to (3.7) are identi-

cal to those detining the vehicle routing problem,  In tact, these townn

continuity expressions could he expressed without including periodicity,
Periodicity is required in defining other constraints, however, as will

be secn later.

Compact Continuity Constraints

A paper by Fox, Gavish and Graves (11) provides a compact
formulation of order N for the time dependent traveliing salcesman
problem (TUTSP). The TOISE i< a variation of the TSP in which
C = [Cijtl' The cost of going trom i to ) depends on the time period

t. It is assumed that travel time between any two cities is one time

period.  Clearly 1t (15 anvariant over t, the TDISP reduces to the 1S,

The TOTSP formulation of (11) can he expanded to detine the tour
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continuity constraints for the PUDP.  The problem is

S ) . R _—
nize .. X. . 3.8
minimize 13 &1)t ijt ( j

subject to

T xt.t = (3.9)
itk )
NN A N § ,
: ) U ¢ xg.t - / ) lxﬁitv , 1= 2,3, W N
j=1 t=2 k=1l ' j=1 t=1 k=l -
{(3.10)
N N
s N - 1z r=1,2 N
VX, TooxN =0, Tt (3.11)
j,t=1 rit i t=1 irt k = 1,2, , N
) X, . < 1 , k=1,2,...,K 12
je2 Wb - e
xs. 0,1} for all 1, j, t and k (3.13)
ije 7 v . 3.1

These cquations are of order NK, while the conventional expressions
require cquations of order N°. As before, the number of decision

N . - P | . - - -
variables is of order KN'. [Expressions {3.11) and (3.12) are analogous

to (3.3) and (3.4). The contribution of tox, Gavish and Graves i1s that

expressions (3.9) and (3.10) eftfect subtour climination.
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IV. ORIGIN/DESTINATION CONSTRAINTS

The key element that distinguishes the pickup and delivery problem
from the TSP and the VRP is the precedence requirement of origin before

destination., This requirement can be expressed as

N N ) N N ,
) ) KK et T ) )t x:.t > 1,
i=1 t=1 1, i=1  t=1 J
for cvery jeQ ; (3.14}

Were one willing to include the decision variable T in the formulation,

then

Tj < T1+n for every jeO (3.15)

would express the same requirement. The latter expression does not
require the periodicity paramecter t, but does increase the number of
decision variables.

Unless K = 1, it is also necessary to insure that the vehicle
visiting the origin is the same vehicle that visits the corresponding

destination. This can be accomplished by

: N k T % k for cvery je0
) ) - X,. = S
‘ 1)t k =1,2,....K

(3.106)
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V. VEHICLE CAPACITY CONSTRAINTS

The impact of vehicle capacity on the PUDP is totally different
than it is on the VRP. For the VRP, a given set of customers either can
or can't be serviced by a given vehicle, depending on the sum of the
customer's requirements. With the PUDP, it is the sequence of stops
which determines the quantity on the vehicle at any time. This fact is
what necessitates thc use of the period parameter t. The capacity of

a vehicle is not exceeded at any time so long as

T N N k ] I\i ‘.\i' K
D R T L N N P U N
t=1 i=1 j=n+2 ) t=1 i=1 j=p+2 4 M
for every T¢T A
k = 1,2,)...,}; (5.17)

VI. TIME WINDOW CONSTRAINTS

There are two approaches to defining time window constraints. One
approach employs clock time, while the other uses the periedicity

paramecter. For the former, the expressions are

T. > e. , i=2,3,...,N (5.18)

and

~
A
Pasd

, 1= 2,3,...,N . (5.1

For many instances of the problem, it is possible to approximate

clock time by a stop number. For these cases




X
1 14
L.
t j N }§ K
{ ) ) Y Xiip = b, § = 2,3, (3.20)
( t=e, i=1 kst J
. J
-1
i . . |
i insures that the time window constraints are included.
ﬁ VII. QUALITY OF SERVICE
|
-~ . .
1 As above, either clock time or the number of periods may be used
3
H to represent the desired standards specified by Qi' Hence, one could
i B
.f{ use either
- 1. - 1. < . for every jeO (3.21)
j*n i 2y v ¢
or
- N N K K N N K K
N v Yoot x - ) ot ox < qQ
L I8 L L L 2 s = ; s
=1 t=1 k=1 UITRT 0 en) ke Lt !
for every je0 (3.22)
i
to insure that quality of service is maintained.
VIII. OPLERATIONAL CONSTRAINTS
i
The operational constraint may be expressed by
S‘ k < . = K ~ it Brd
) cijt xijt < Dk s k 1,2,..., . (3.23)

ijt

Although the above formulation does in fact represent the PUDP,

the necessary quadruply scripted variables should be noted. The
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. The implication of this fact will become apparent in the next chapter
"j where discussion of optimal solution techniques will be discussed.
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CHAPTER 1V

LEXACT SOLUTION ALGORITIMS

It was noted in Chapter Il that optimal solutions to vchicle
routing problems (VRP's) were difficult to come by. Because the pickup
and delivery problem (PUDP) is more complex than the VRP, one might
suspect that exact solutions to it would be cven more elusive. In many
cases this suspicion is correct. However, for one subclass of the
PUDP, large problems (over 100 stops) are rcadily solved optimally using
a dynamic programming algorithm.

Other than dynamic programming, the exact solution techniques
detailed earlier for the travelling salesman problem (TSP) and the VRP
are not effective in solving the PUDP. Not all PUDP inscvances can be
solved by dynamic programming. Consequently, this chapter is devoted
to explaining why the traditionally successful algorithms fail, or arc
not effective when applied to the PUDP, and to developing the conditions
and algorithms that allow for optimal solution to rclatively large
PUDP's, A detailed discussion of the multiple vehicle PUDP is deferred

until Chapter VI. i

I, INEFFECTIVE TECHNIQUES I

Integer programming by means of cutting planes, branch and bound
approaches, and Lagrangcun techniques, has been used with varying
degrees of success for solving the TSP and the VR, In addition, a

Benders decomposition approach has been successfully applicd to the VRP

46




R e
4.

s

BT

.
-t

N

A T

as both a heuristic and an exact solution technique. The complexity
of the constraints renders cach of these techniques ineffective when

applied to the PUDP.

Integer Programming

The integer programming (IP} formulations of the PUDP given in
Chapter IIIl are considered as compact as possible. Although the compact
formulation is only o1 order KN, the number of decisions variables
presents the primary difficulty. At least KN® (0,1) decision variables
are required.

Consider a hypothetical problem with 15 customers, or 31 stops.
Nearly 30,000 decision variables are required for the single vehicle
version of the problem and more than 100,000 variables are needed if
the customers are to be serviced by four delivery vehicles. For the
TSP, integer programming techniques such as cutting plancs and implicit
enumeration generally have performed less efficiently than have others.
Given the large number of decision variables and the suspect efficiency

of cutting planes in gecneral, further pursuit of IP was not undertaken.

Branch and Bound

Branch and bound techniques are by far the most common type
applied to the TSP and to the VRP. This is true because relaxations of
the TSP or the VRP, such as the assignment probliem, are rcadily

solvavie and provide logical branching points. Also, pood lower bounds

on the optimal completion of the subproblem can be readily computed.
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Tight bounds and logical branching strategies arc not recadily
available for the PUDP. The precedence requirement is the primary
complicating factor. The sequence in which stops are visited is
irrelevant in the TSP, but critical with the PUDP. Consequently, the
relaxation solution may produce infeasible subtours. Therefore, one
must not only branch to eliminate subtours, but also to achieve
feasibility. Given both subtours and infeasibility, the choice af a
branching rule is not readily apparent. Even if such a rule were
readily available, the nced to compute tight bounds remiins as a
necessary criterion for a good branch and bound algorithm. Such
bounds are not readily availlable,

The PUDP is a restriction of the TSP. Therefore, the optimal
solution to the TSP is a lower bound on the PUDP.  For noncontrived
problems, we will see that the TSP provides a very poor lower bound.
Consequently, to efficiently solve the PUDP by branch and bound, a
relaxation of the PUDP is needed that produces bounds better thun the
optimal TSP solution over the same network. Further, the bound must
be easily computed in polynomial time (such a relaxation is referred
to as a '"polynomial time relaxation'). The tollowing lemmi shows that

such a relaxation probably does not exist.

Lcmmgwg. Unless P = NP, there docs not exist a polyvnomial time

relaxation of the PUDP with value R which is greater than or equal to

the optimal TSP relaxation solution value of Z% for all PUDP instances.

-a
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Proof. Let P* be the value of the optimal PUDP solution and
suppose Z~ < R < P* for cvery instance of the PUDP. Let A be the
polynomial time algorithm that produces R.
Consider the following instance of the PUDP:  one vehicole, no
capacity, operational, time window, or quality of service constraints
other than for stop n and a requirement that all origins be visited

before time T and all destinations after time T. Origin n and i1ts

corresponding destination 2n are defiined such that ¢, = in = T and
- =2 =T+ 1, ¢ . =c¢, . for all j, c. = C. tfor all i and
€2n 2n ’n,j 1,1 1o 1,n 1,1
Choop T 9. In effect, stop n and 2n are identical to the depot.

,2

As defined, the PUDP reduces to two TSP's. One over the n-1
origins and one over the n-1 destinations. Lot ¢y c 0 for all i,

jeb, c. .

ij = = for all ie0 and jel. Apply A to the resulting I'UDP.

Clearly P* is the value of the optimal TSP solution over the depot
and n-1 origins, which is also the value of the PUDP solution. Hence,
z2¥ = R =P from the hypothesis. But any TSP could casily be trans-
formed to such a PUDP instance. ‘Therefore, A can be uscd to solve any
TSP. Since A is a polynomial time algorithm, this would imply P = NP,

Consecquently, we rcjected o <1 i_P* and accept the provisions of the
lemma.

Empirical evidence suggests that obtaining a bound better than the
TSP bound is difficult tor any instance ot the PUDP.  No workable

hounding scheme was uncovered thiat was not also a lower bound for the

TSP, The LI solution obtuined by relaxing the integrality requirement

could be such a bound, but is not casily computable due primarily to the
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previously noted number of decision variables required. Given such
loose bounds, any branching tree would clearly become enormous.
Attempted hand solution of a five stop (two origin/destination pair)
problem demonstrated the futility of the branch and bound technique.
Therefore, it is not deemed practical for optimally solving the general

puDP.

Lagrangean Technique

One ot the most powerful techniques for solving the symmetric TSP
was ... l-trec approach of Held and Karp (22,23). The precedence
requirement of the PUDP can not be accomodated by the l-tree approach.
The construction of the l-tree requires the construction of a minimum
spanning tree. The grécdy algorithms used for the solution of the
minimum spanning tree problem requires an independence relationship that
is immediately contradicted by the "origin before destination”
constraint.

The resuit is similar to that cited above. Whercas the TSP is
sequence independent, the PUDP is sequence dependent.  This dependence
is the primary factor precluding or limiting the solution of the PUDP

by the l-tree, branch and bound, and integer programming approaches.

Benders Decomposition

The Fisher-Jaikamur algorithm is based on iterating between a
generalized assignment problem (GAP) and a4 travelling salesman sub-

sroblem.  The objective of the GAP is to optimally assign customers to
I ) | ) £

vehicles such that vehicle capacity is not exceeded. 4
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With the PUDP, vchicle capacity may not even be a factor. LEven if

it were, the capacity limitation affects the problem differently. It
is dependent upon the specific routes followed. Remaining unused
vehicle capacity decreases as an origin is visited and increases as a
destination is visited. Thus, for a given combination of customers, onc
or more sequences might cause the capacity limitation to be violated,
while another would be feasible. This can be contrasted to the VRP
where one normally considers the vehicle fully loaded when it departs
the depot. In this varying capacity environment, the GAP is .o«
clearly defined. Assigning customers to the correct vehicle i the
crux of the multiple vehicle PUDP. However, no logical formulation of
the customer assignments could be found so that the Benders decomposi-
tion concept could be applied to obtain an exact solution. Chapter V1
specifically addresses the multiple vehicle PUDDP.
I1.  DYNAMIC PROGRAMMING AND PRECEDENCEH
CONSTRAINTS

Dynamic programming has been used less on the TSP than some other
techniques. The computer storage requirements, as noted in Chapter 11,
are the primary difficulty in using DI to solve the TSP, Yet dynamic
programming can be adapted to handle the precedence relationship of
the PUDP. Further, this can be accomplished with a signitficant
reduction in storage requirements.

The recason for the reduction is that infecasible states are not

generated. For a 13 node TSP, ncarly 25,000 individual storage locations




are required for the data generated by the recursion equations. For

the PUDP of equal size (six customers plus the depot) and only
precedence constraints binding, less than 3,000 locations are nceded.
The next scctions explain how this reduction in storage requirements is
possible. Further reductions are pcssible for some more heavily con-
strainted instances of the problem. These instances are discussed later

in the chapter.

Induction Schemes

In (2.17), the basic dynamic programming recursion for the
travelling salesman problem was given. The expression for the shortest

partial tour from node 1 to node j that passed through

S = 1 1 1
k {11;12:'--;1]\,_1} (1.1
was
. - I - Cole o R N
fk(J(Sl\] mlnl;mum[(k_l(lm‘hk \m‘ + Lim“i . (,I._'

In this form, the recursion can be thought of as torward induction in
that the salesman is procceding forward from the starting point to some
intermediate point in his tour. Often, dynamic programming is thought
of as backward induction.

In backward induction, the ro-ursion ~ccks to taind the shortest

partial tour from node 1 that passes through

S = fi

Ne2-k INe Lok Y IERE
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l and return¢ to the original origin, node 1. The subscript Kk indicates
E]
{ the total number of nodes, including node j that are included in the
partial tour not including the depot.  As developed in Chapter 117,
|
, N is the total number of distincet nodes. Mathematically, the recursive
- expressions are ldentical. ‘The only difference is in the definition of
3
" Si - Backward induction is used in the algorithms developed to solve
-y
o the PUDP.  Thercefore, all eaplunations to follow assume the bachward
;: . .
. orlentation.
“‘:' K
. State Space Leneration
Only feasible state vectors need to be generated tor the puUbpP.
Stop j of expression (1.2) will be reterred to as the lead. Conse-
quently, if j is the lead and j is onc of the n origins, it must be
o truc that

(jen) o 8 v

if the vector i1s to be feasibie. Stwmtlarly, A 0 s o dostination,

it must be truc that

(i-nj) ¢ Sk . R

Also, if stop i 1s an origin, then

P S == (i+n) ¢S

L . 14,00
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State Vector Representation

A binary vector representing the lead unioned with an appropriate
Sk is gencruated and stored for cach fk value.,  These vectors are used
to identity euach Sy and to identify the optimal solution sequence.
Each vector tukes advantage of the way in which decimal numbers are
stored by a digital computer. I 1 represents any one ot the N
different stop numbers, then the binary representation of the decimal
number 2i-l consists of one 1 in the appropriate location and 0's in
all other positions of the word. Suppose juUS = {2,416} and the computer
system employs an ecight bit word. Figure 4 depicts the binary repre-

sentation of the decimal number 12, which is obtained by

227V o aeTh L 28T 2 08 e 32 = a2 ) (4.7)

Consequently, the decimal number 12 corresponds to the presence of stops
number 2, 34 and 6 in the state vector, 1t §s cuasily seen that all
possible combinations ot stops have unigue binary representations.

For problems where N is greater than the length, I, of an integer
word on the computer system in use, the representation is separated
into two (or more) vectors such that cach word represents part of the
total state vector. For example, suppose N = A5 and 1 = 32, Then for
given state "Lotwo words, REPD (%) and RLP2 (°), could be used to

indicate the state condition for fk('). Stop numbers 1 through 31 could

+

he tracked by REPL (7)) and 32 through 45 by REP2 (T, The coneept is

similarly cxtended to REP3, cto, as pecessary for large» problems,
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-
. least significuant
. digit
A + sign &
’ Binary
~ ‘ 0 1 0 i 4]
i word: 0 o I
0 4 2

Figure 4. Binary representation ot the
state vector for stops 2, d
and 6.
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Storage Requirements

As noted, the number of storage locations required to solve the
PUDP is less than that for the TSP, The fecasibility criteria, expressed
by (4.4) through (4.6}, decrecase the number of combinations that must
be considered for cach lead. This difference can best be visualized by
computing the storage locations required for one step of a sample TSP

and for the related PUDP.

Example requirements. Let N = 15 and k = 7. Suppose the lead is

stop number 2, which corresponds to an origin in the PUDP with the
corresponding destination being stop number 9. Yor the TSP, with the
depot fixed as stop number 1, there arc (12) = 1,716 different S,
values to be computed. For the PUDP, stop number 9 must be included
in all S7 values. Thus, there arc five free positions available, which
cen be filled with

* 2 origin/destination pairs and 1 destination,
* 1 origin/destination pair and 3 destinations, or

« 5 destinations.

The number of combinations for cach configuration is

) (‘1‘) 15 - 4 = 60,

6 5 ~
. (1) (3J = 0 10 = 60,
. (g) = (,’

respectively, for a total of only 120 values to he computed.  This

represents more than a tenfold decrease in storage requirements.  Were




‘ the lead position a destination, 141 storage locations would be
i required. For a problem with N = 29, over a hundredfold decrcase can
be achieved. However, the growth of storage locations remains

exponential.

Tctal requirements. An upper limit on the total number of storage

Y . . -1 . . .

- locations required of 2n - 3! + 1 is given by Psaraftis (24), where
A n is the number of origin/destination pairs. His development of the
g
X states is different, but requires essentially the same number of total
>

v”i

states for the PUDP with only precedence constraints binding. The
inclusion of time window and/or quality of service constraints for some
problem instances reduces storage requirements cven further, in
contrast to Psaraftis' development, as will be seen later in this

chapter.

Example Problem

An example problem will be used to cxplain exactly how the dynamic
‘ programming algorithm developed solves the PUDP with only precedence

constraints binding. A problem with threce customers or origin/desti-
nation pairs will be assumed. The depot is node 1, while the origin/
destination pairs arc 2/5, 3/6, and 4/7, respectively. Table 1 depicts
the cost matrix for the hypothetical problem. Inconsistent cclls,
such as a destination to its corresponding origin, are blacked out to
so indicate. However, any cost could be placed in one of these cells,
as the algorithm does not illow for such infeasibilitices. Table 2

presents all of the fk(j]Sk) values, in the order generated, as well

; as the binary identification vectors,




P . e . -

{
58
i
{
&
. TABLE 1
; COST MATRIX FOR EXAMPLE DYNAMIC
A PROGRAMMING PROBLEM
. 7 B S
; 1 2 i1 5 6 7
2 ///7 1 s | ol s ol s
>z
3 7// 5 /A/“ IEN R
4 /// 4 G ///A 3 3 0
- |~
51 o Ké«/n 8 /1/ - 8
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;f TABLE 2
‘ RECURSIVE DATA FOR EXAMPLE DYNAMIC
? PROGRAMMING PROBLEM
|
L fk COUNTER BINARY RLEPRESENTATION
i VALUL LEAD VECTOR 8-7-6-5-4-3-2-1
-
| k=2 8 2 2ls 00010010
':i 10 3 316 Qo100 0o
1 1 4 417 01001000
, 9 5 516 00110000
& 9 5 Si7 1010000
W 7 6 615 D01 10000
- 1 6 617 01100000
8 7 715 01 01 vownaoa
2 7 716 01100000
k=3 7 2 2150 DO Tool o
11 2 2157 0101 001 0
9 3 3105 00l 10100
9 3 3167 Ol T o0y
8 4 4175 a1 011000
2 4 3170 Ol 1ol aqao
10 5 5136 01011000 {
9 5 5147 01011 oon '
8 5 5167 A1 I B S R R IS
8 6 6125 00110010
9 ¢ 647 [ A I BT BT
8 O 6157 01110000
11 7 7125 D1 0000100
21 7 7136 D11 001 0n
7 7 7156 011100000
, k=4 14 2 21536 DOl 1ol
7 2 21547 Clol 1ol
8 2 21567 0Lt 1u0:o0
12 3 31625 00110110
13 3 3647 0l 1ol 1oaq
8 3 31657 0111 01 0n
1 1 d4725 010110} o0
I5 4 31736 o1 10110«
7 4 41750 G111 1000




TABLE 2 (continued)

fk COUNTER BINARY REPRESENTATION
VALUE LEAD VECTOR 8-7-6-5-4-3-2-1

51367
51470
61257
61475
71276

71365

215367
215476
316257
3ted7s
417256
117365
513647
612547
712536

2153647
3162547
4172536

11253647

[
— et b bt b
[ ]

= -2

5
5
o
6
7
7
2
2
3
3
1
4
5

joal
N S
—— et e bt e b bt s s

~J
- e e R e e e b

-~
=

— et

—

Optimal Solutions: -5-4-7-6-1 and
-2-3-5-06-1
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The algorithm used actually gencrates a vector of length k that is
incremented to obtain each feasible state, like a counter. Lach clement
of the k-vector is then used to compute the binary representation, which
is stored for each fk value. If the lead position is an origin, the
next position in the k-vector is automatically set to that origin's
corresponding destination. Consequently, only k-2 positions would
require incrementing. Further, any time one of the elements incremented
is an origin, the next element is similarly set to its corresponding
destination. Thus, for k = 5 the first counter vector is given in
Table 2 as

215367,

Origin 2 as the lead automatically sets the next position to 2's
destination, 5. Origin 3 automatically sets the position on its right

to its destination, 6. Lach time one clement of the k-vector is
incremented, all elements to the right of it are initialized to their
lowest feasible node number. Then the vecter is incremented like 2
counter, with the right most element incremented first. Once completed,
each clement of the k-vector is then used to compute the binary represen-
tation, which is stored for cach fk value. The binary representation
conveys only the identity of the nodes, not the sequence in which they

were generated.

fz(j}ix). The algorithm begins by computing f;(j'iw). Recalling
—————— 1

that the algorithm uses backward recursion, there are only two contigura-

tion patterns possible:




* uan origin/destination pair with return to the depot, and

* two destinations with return to the depot.
In the latter case, any destination could serve as the lead, while in
the former, only an origin could. The computation in either case is

straightforward and will not be c¢laborated on further.

fa(le3). Beginning with j, or the lead, equal to the first origin,
node 2, we generate all possible $3; combinations. Because node 2 is an
origin, node 5 must be included, leaving only one freec position in $j.
Clearly, this node must be a destination, Beginning with the lowest
numbered destination node, not identical to any destination alrecady
fixed, each state vector is incrementally generated. LExpression (4,2)
and the previously generated data are then used to compute cach f3
value. Once all S3 combinations are generated for node 2, the lead is
incremented and the procedure repeated.

When the lead is incremented to node number 5, the first destination
node, there arc two free positions in S; that can be filled by:

* an origin/destination pair, or

° the remaining two destinations,
In the former case, an origin requires its corresponding destination.
Thus, when the origin position in the state vector is being incremented,
therce is no free position left in Ss. For the latter, one free position

remains.

fl,(j-j;‘j:_)_. The procedure for fy values is the logical extension of

that for 3 values, With an origin as a lead, the two free positions

in S, can be filled by cither:
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* an origin/destination pair, or

+ two destinations.
Similarly, when the lead position is a destination, an origin/destination
pair with one destination is the only possible combination. A
destination followed by three destinations is impossible since there are

only three total destinations in the problem.

Remaining fi(j|Sk)'s. The same process is repeated for fe and i

values. For f¢ values, only origins are legitimate lead values,
followed by all other node numbers, The optimal solution value is

obtained by solving

£2(1 2,3,...,7 = min [fel(l |Se-1 + .

7( Ll I ] 3 ) [ 6( m, 6 m) i 1]
m n,

Because only origins can be in the lecad position in t,, onc is assured

that imEO and that the route begins legitimately.  One can then identity

an optimal solution with value 17. One such solution is 1-2-3-53-1.7 1.1,

Obtaining the solution. Using the fk values, the Tead node ton

that value, the binary representation and the original cost data, this
solution can be constructed one node at a time. Por example, the -
value of 17 minus the cost from the depot to node 2, which is two,
equals the f value of 15 associated with node 2 as a lead. Similarly,

this value of 15 minus the cost from node 2 to 3 of 5 equals the {1,
i

value of 10 associated with node 3 as the lead. This assignment 1s

legitimate since the identification vectors indicate that no previously
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scheduled stops (in this case node 2) were usced to obtain the fk value,
The process continues until all stops are scquenced. The tour is then

completed by indicating the return to the depot.

Computational Results

With only the precedence constraints binding, the exponential
growth of the required storage locations limits the size of problem
that can be practically solved. Table 3 summarizes results for four
small problems. All computer runs were made on the University of
Tennessee Computing Center's IBM 370/3031 computer system. Cost matrix
data were generated randomly. Both x and y graph coordinates between
0 and 99 were generated for each point. Interpoint distances were then

computed using the rectilinear metric, i.ec.

Cli,j) = xg - x|+ |y, -yl (4.9)

wherc X is the x coordinate of the ith point, etc. The data generation
technique was the same for all problems examined throughout this
dissertation. All of the algorithms developed in this and the next two
chapters are independent of the manner in which the cost matrix is
obtained. The rectilinear metric was selected only hecuase it

facilitated hand computations during the carly stages of algorithm

development . Any metric could be used in place of the rectilinear ane.




TABLE 3

IYPICAL COMPUTATTONAL RESULTS TOR THE DYNAMIC
PROGRAMMING SOLUTTON O THE Pupp

SRINRER Y SOLUTION
#OF CUSTOMIRS 4 0F NODES VALULS TIML (SEC*
2 5 10 3,02
3 - 51 1,08
5 ¥ 05 5,203
7 15 10, 199 124,72

*Includes input and output operations and data peneration
as well as the solution procedure.
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TI1.  DYNAMIC PROGRAMMING WITH
ADDITIONAL CONSTRAINTS
The discussion in the last section dealt only with binding
precedence constraints. In some real world applications of the pickup
and delivery problem, many other constraints, as suggested carlier,
may be present. In Chapter I, two different approaches for tormulating
the fully constrained version of the PUDP were presented. One employved
the use of clock time, while the other used the stop number of a
customer in the optimal sequence. This lutter approach is ideally

suited to solution by dynamic programming.

Lead Position Feasibility

Position identification. The first origin visited after the

vehicle leaves the depot is considered to be the first stop number.
Conscquently, the last destination the vehicle visits betore returning
to the depot is designated stop number N-1, with all other oriyvins and
destinations being sequenced somewhere in hetween.  Larlier in this
chapter it was noted that the subscript h on the (k indicated the
number of nodes or custoriers in the partial tour trom node i to the

depot.  Let ' represent the stop number associated with k. Then the

stop nunber can be found by
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C Feasibility set.  The dynamic programming algorithm previousiy
' described proceeded by tirst fixing the lead customer, and then
| generating all combinations of subsequent stops.  However, when con-
3 straints other than precedence requirements are present, it is likely
1
. that not all customers can feasibly be assiyned to a given 7 lead
s - . . .
K . position. Theretore, there is no need to generate all subseguent
-
customer combinations, nor to storc any data relative to inteasible
i
combinations. Let
t . 'I“k = {jij is a feasible lead for - Pl
State¢ vectors will be generated only for s .
K
.
Time windows, In order for the complement of 1 to not be orpty
N~

for all 7y, at least one of the customer reguirements must huve a not
carlier than (NET) requirement ar a not later than (NL1T. requirement,
or both. The more interesting case, In terms of solution by dyname
programming, is when cach customer's requirements invelve time windows,
which 1t is assumed can be detined by stop pumbers<.  When tize windows
are present tfor all customer reguirements, the set J_ 1s clearly
defined tor all —y, and the total number ot storape lovations regquired
for the state and binavy representation vectors is redoced. Tgually

significant 1< that many ot the other possihic constraints are also

detinable in terms of tone windows,




Handling Other Constraints

The presence of NET or NLT times will be assumed for at least once
portion (either the origin or the destination) ot a4 customer's require-
ment.  One point in time is all that is necessary to tix delivery
windows, as explained below, for servicing both the customer's origin
and destination.  In many cases, this one point would be a NLT time
tor delivery to the destination.  For casc of explanation, the dial-a-
ride problem will be used. However, any PUDP for which the appropriate

assumptions hold could he substituted equally as well.

Quality of service. Let Q represent the quality of service for
the dial-a-ride service problem. Q is specitied by the provider based
on his standards. It represents the maximum number of stops betore a
given customer reaches his destination. Conversely, given a required
delivery time, represented by o specific stop number, that time minus

Q represents the carliest time that a customer could be piched up at
his origin., The use of stop numbers to represent time is absolutely
necessary.  Conscquently, the direct travel time between two points

is taken to be onc stop, repardless of the actual clock time required.
Supprse a custorer mast be at his destination by stop 1. In this case,
the NLT for the customer's destination is 1. The NLT time tor the
corresponding origin is -1 since it takes a4 minimum of one period to
travel from a customer's origin to his destination, Since Q is the

maximum difterence between when a customer must be at his destination

aad when a customer is actually picked up, the cartiest time that the
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customer could be picked up would be T-Q.  Thus, T-Q represents the NLT
time for the customer's origin, A NET value of T-Q+1 for the customer's
destination is obtained since there is a minimum of a4 one stop travel
time. Suppose Q=5 and T=18 for a given customer. Then the NET and NLT
times tor that customer's destination would be 18-5-1=14 and 18. VYor
the customer's origin, these times would be 18-5=13 and 18-1=17,
respectively.  The overall time window associated with this customer
would thus be stop numbers 13 through 18, inclusive. In addition,
there would be a window of 13 through 17 inclusive for his origin anl
14-18 inclusive for his destination. Any attempt to provide servioc it
stop numbers outside these windows would result in an infeasible
solution,

I't one wishes to avoid long waiting periods upon arriving at his
destination, a maximum waiting parameter, M, could be used so that the
MET time for arrival at the destination could be computed as T-M.
Continuing the numerical example of the previous paragraph, if M=3, the
carlicst time (stop number) that the customer could arrive at his
destination would be 18-3=15. 1he overall and origin time windows
would remain unchanged. tHowever, the destination time window would
become stops 15 through 18 inclusive. Both ¢ and M were used for
computational cxperimentation, which will be presented later in this

chapter.

Capacity constraints.  bor the dial-a-ride prohlem, the capacity

constraint is simpler hecause each person can he thought of as one unit.
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Therefore, one must only be concerned that the number of people in the
vehicle at any time does not exceed the vehicle's capacity. This can
be accommoduted by using a not unrealistic assumption that the vehicle
capacity is greater thun or equal to Q. Since Q represents the maximum
number of stops before a customer recaches his destination, and since
each customer represents a unique stop, the vehicle cpapcity can never
be exceeded.

The assertion that the needed assumption is not unrealistic can
be argued in terms of a hypothetical situation. Suppose our dial-a-
ride service provides transportation services to handicapped people.
The van to be used can hold at most scven passengers. Fifteen requests
for service have been recceived. Each request corresponds to a pichup
at an origin and delivery to a destination. Hence, our driver has 30
specific stops to make. Given that the passengers are handicapped and
require assistance cntering and leaving the vehicle, we suppose that
the average time between any two stops in an optimal scquence is
15 minutes. When one physical location corresponds to more than one
stop, the 15 minute average should not be materially affected by the
increased time required to provide assistance to more than one customer.
These numbers arc arbitrary, but do lead to a convenient cight hour
workday for the driver.

The vehicle's capacity could not be exceeded unless at least one
person were required to ride for two or more hours to arrive at his

destination. Note that such an eventuality is necessary but not

necessarily sufficient tor vehicle capacity to be exceeded,  Two hours
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. appears excessive in terms ot the quality of service that any ;
|
t |
- organization providing dial-a-ride service would provide. Conscquently,

the assumption is judged not unrcalistic.

Storage Requirements

< Reduction based on lead. By using the set J_ , as defined by

T
B B

expression (4.11), the storage vequirements for the state and repre-

> sentation vectors can be reduced. For example, if for each value of
Tk, only 30% of the j arc included in J”k’ then the total storage
required is only 30% of that required for the unconstrained instance.
This figure makes no assumptions about the feasibility of each Sk.

Further reductions are possible when this is considered.

Feasible elements in Sk, The sets 5 represent the customers who

are served subscquent to the lead stop in a partial tour. For most !
values of k, not all stops can feasibly be included in 5. Tor example,
any customer j, either an origin or a destination, may have an carliest

service time cj and a latest service time ﬂ) defined. If

Loo<omy (4.12)
cannot feasibhly be contained in 5. lLet
lg,k = (j]ﬂj < mt . (1.13)

The number of fk values is primarily determined by the number of

: combinations in S, which is determined by the number of customers to
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be taken over the k-1 remaining positions. From expressions (4.12) and i
(4.13) it must be the case that
Jeu_=> i ¢ 8 (4.14)
k
The reduction from (4.14) in the number of customers that can be
included in Sy produces a marked decrease in storage requircments.
Specific examples are presented below. However, cven further savings

in storage and directly related computational effort can be achieved.

Required elements in Si. While some customers can not be included

in Sg, it is often true that others must be if the final tour is to be
feasible, regardless of partial tour feasibility. Consider any customer

j, either an origin or a destination, where
ej >Tfk . (415)

If customer j is not included in 5, there can be no feasible completion
of the total tour, since such a completion would require j to be
sequenced before m, in violation of (4.15). It should be noted that

the partial tour by itsclf might well be feasible. Let

V., = {jlei >m (1.15.1)
k .

and define

o= {3ljequ, o V_ )y uad ) (1.10)
7,k .Tk T‘}\ TYk

Then F. - represents all customers for which a decision can be made as to
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; ‘ whether or not they are to be included in a given partial tour. Using
& the symbol |-| to represent the set cardinality, the upper limit on the
!
number of ty storage locations for a given value of k is given by
o (o fre | -1
L h -
: [ R . (1.17)
“ k-1- |Vg |
L k
.“
A
: The precedence requirements make the actual requircements significantiy
Wy
_ less.
i
Sample storage requirements. Consider a travelling salesman
problem, a constrained and an unconstrained dial-a-ride service problem !
of size N=13. Suppose k=7, which represents the halfway point in the
- - . .
recursions. Further suppose that for the constrained problem the sct
! i
. . o . . !
Jn, consists of two origins and three destinations, the set U, :

consists of one origin and onc destination in the torm of one pair,
Thus, Fn7 consists of three origins and tour destinations, Table 4
shows the storage requirements to compute all feasible - values for all
three problems. The 45 actual locations required for the constrained

problem is only 60% of the limit of 75 computed by cxpression (1.17).

TABLLE 4

EXAMPLE f) STORAGE REQUIREMENTS FOR THRLE RELATED
PROBLEMS WITH N=13 and k=7

Travelling Salesman Unconstrained Constrained
Problem pupp runp

1 .
‘ 5,544 576 14
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As will be seen below, this efficient method of state generation and

storage allows for the solution of much larger problems than previously

solved.

Existence of a Feasible Solution :

Feasibility question. When all of the previously suggested problem

constraints are present, therc is no guarantee that a fecasible solution
even cxists., The more heavily constralned a given problem is, the
greater the probability that a feasible solution does not exist. The

following lemma examines the feasibility question for one instance of

the PUDP where capacity constraints arc not binding, or where the
capacity arguments suggested earlier in this chapter arc applicable.

Suppose that for cach customer with origin i and corresponding

destination j, all relevant constraints can be expressed in terms of
the stop numbers on the vehicle's route. Further supposc that cach
customer has a specified stop number Ti representing the NLT time (iji
for delivery to the destination. The latest time the corresponding
origin could feasibly be visited is Ti'l since at least one time period
is required to travel between any two points. (onsider a solution P
generated by taking cach required stop in a nondecreasing ordering of
the not later than times. For each customer, there are two required
stops: one for the origin and one for the destination. In such an

ordering, a customer's destination would always follow its corresponding

origin since Rj = 'l‘j > Ti-l = Qi' Conscquently, P would alwavs satisty

the precedence requirement of the PUDP,
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The construction of P can be demonstrated by the following simple
example. Suppose there are three customers with NLT times for their

destinations of 4, S and 8 for D, (destination 1), D,, and Dg, respec-

1 2
tively. Then the NLT times for the corresponding origins are 3, 4, and

7 for 0y, 0, and 03. Then P would be the sequence:

Depot-0; (3)-0,(4)-D (4)-D,(5)-05(7) D (8)-Depot,

where the numbers in parcenthesis are the NLT values.

Lemma 3. Given a not later than time for each delivery, construct
P as shown above. Suppose Q (the quality of scrvice paramenter) is
defined to be the maximum possible number of stops before a customer
reaches his destination. Thus, for a customer with origin i, destination
j and Tj, the not earlier than times are computed to be Tj-Q and Tj-Q*l
respectively (discussed carlier on p. 68). Then, there exists at lcast
onc feasible solution if and only if P is feasible. To be feasible a

-1

point must be sequenced within its time window: T5-Q through T,

inclusive for the origin associated with destination j and 1j—Q+1

through Tj inclusive for j.

Proof. The if part is obvious. For the only if part, suppose P

. - * .

is not feasible. Let P be any other scquence. It will be shown that
* " . - .

P~ cannot be feasible. Let h represent the number of stops until the
first infcasible assignment in P is encountered. Let j represent that

infeasible assignment. For example, consider the following P g




Depot-0,-0,-D; -0,-D,-Dy-Depot.

1f the third stop, which is “1’ is infeasible, then h=3 and j=D1. These

are two cases to be considered, a point sequenced either too carly or
too late.
Case 1; e; > h. In this case, the point sequenced, either an
it

origin or a destination, has been sequenced too early. In effect,
will be shown that to move j later in the tour requires placing another
point k in spot h which has ¢ > ey.

Let h' be the first stop for which j could possibly be feasibly

~ - . . *
Clearly, h' > h since ¢; > h in P, Hence, in P,

. *
sequenced in P . j

h'-1 points must be sequenced before j. Let

Ho= {ife; < ej} (4.18)
Because
ep = Ay - Qel, 0= 1,2, N , (1.19)
it must be true that ¢; < ¢ if and only if £y ij. Therefore, it
follows that
(4.20)

] < h

where [ represent the cardinality of the set. Were this not true, ]

would have occupied a later position in PP, tor P to be feasible, it

must be true that




4

[} > h'-1 (1.21)

i.e., there are enough points to fill the first h'-1 positions.

Equation (4.21), in turn, implics
h > h'-1 (4.22}

or

{39
[ 3]
—

h > h! (4.

which is a contradiction. llence, if ¢j » h, there is no possible

feasible sequence.

Case 2; %3 < h. For the sccond case, the point has been scquenced

too late. To be feasible, it must be secquenced carlier. llowever, to
place j carlier in the tour, another point k which has 1 < ;j put into
position h.

Let h' be the last possible stop for which j could feasibly be

. * . N . .
sequenced in P, i.e., h' = £.. Using an argument which is the reverse

J
of Case 1, h' < h and h' - 1 stops must be scyuenced before stop h
{customer j) in P*. Let
* .
o= lifey < g5 . (1.21)

H* is the set of customers that must be serviced not later than Vi.

Since P is ordered in nondecreasing £, it must be true thuat

to
A
~—

TR , (1.




which in turn implies
lH*l > h' > h' -1 .

Conscyuently, P* cannot be feasible since there are more custor
must be scheduled than there are available positions.  In othel
if &j <h, there is no possible tfeasible sequence.

Therefore, one concludes that 1t PP is not feasible, no otl

permutation can be feasible, and the Lemma 1s proved.

Feasibility in general, If the conditions ot Lemma 3 do

checking for feasibility is much more complicated. For exampl

varices per customer requirement it mayv be the case that '), as
developed using the procedure of Lemma 3, is infeasible, but t
slight modification produces a feasible tour. For example, co

the data in Table 5. An ordering P would ne
1—01—02—U1~03-D2—H3—1

which is infeasible since Ol‘ the first customer's origin, is

first, thus, violating e; = 2. But

1-02—01_“1—03—h3_“3-1

is feasible. Since the dynamic programming algorithm only ge
feasible state vectors, inteasibility is recognized when lfF‘
some value of k., lowever, ftor the tour construction heouristi

discussed in the next chapter, a simple technique for insurin

feasibility 1s most important.




TABLE 5

EXAMPLE DATA FOR WHICH P DOLES NOT YIELD A

FEASIBLE SOLUTTON

NLT

CUSTOMER DESTINATION/ORIGIN Q
1 ! 3 h
2 5 N !
3 0 5 3




Computational bxperience

Algorithm desceription,  The algorithn used to solve the

vehicle dial-a-ride scervice problem 15 an extension of thut
only precedence constraints were binding.  The extension men
porates checks to determine which customer requirements shin
and which must be considered tor cach valuce of b oand choice

lead position as explained above.

Types of problems run.  Any number of problems could b
solved. llowever, because the literature is void ot =ample
which heuristics could be tested, emphasis was placed on me
problems. Medium sized 1s detfined to bhe 15 custoners, whidh
31 specific stops. Using the previously mentioned approxir:

minutes between stops, a convenient cight hour workday is o

Constraint definition. Both a quality ot service pars
a maximum waiting paramenter, M, are used to detertane the
varying the tightness ot the constraints, This -puct beco

significant in studving the heuristic solution procedures a

seen in the next chapter.  Table 6 presents the tine windos

for one problem with N = 31, Q = 11, and M -

Results,  Table 7 prescents typical results.  The <tor.
represents the mumber of feasible state vectors that are g

Actual storage reguired for N o= 51 is twice the tigure proe

additional storage is tor the representation vector.  lor




TABLE 6

EXAMPLE TIME WINDOWS TOR Q=11 AND M=0

ORIGINS DESTINATIONS

NET NL # NET

2 ! 3 I 2z
3 1 5 I8 2
4 1 O ) 2
5 1 S C 3
O 1 10 2 5
7 3 13 . S
8 5 15 03 10
9 7 1 21 .
10 9 1o 25 11
11 12 2.0 0 i
12 13 23 27 IN
13 16 20 28 21
14 18 28 e 03
15 20 50 0 o
16 21 sl a1 20
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v TABLE 7
{f SAMPLE COMPUTATIONAL REQUIREMENT FOR EXACT
SOLUTION BY DYNAMIC PROGRAMMING
3 N Q M STORAGE REQUIRED RUN TIME
2 (SEC)
|
7 31 5 3 174 1.280
' 31 5 S 227 1.433
31 7 4 453 1.706
31 11 6 784 3.037
31 11 11 867 3.623
: 91 7 4 1,328 1.631
-
L !
&
1
{
|
|
.""‘ N
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total storage required is four times the figure presented. The
additional storage is for the three representation vectors, one for
stops 1-31, another for stops 32-62 and the last for stops 63-91. The

run time is the average for 10 continuous trials.

Analysis of results. No certain explanation can be offered as to

why the 91 stop problem was solved more quickly than was the similar 31
stop problem. Perhaps the answer relates to the number of other jobs

in the time sharing system at the two different times these problems
were solved. Notwithstanding, 91 stop problems were solved in less than
two seconds, requiring allocation of less than 150k bytes of total
computer storage for compilation, execution and data. One casily con-
cludes that any practical sized single vehicle PUDP for which the
simplifying assumptions — time windows and reasonable quality of service
parameter — apply can be optimally solved very efficiently. The single
vehicle dial-a-ride service problem uppears to be an excellent practical
problem for which dynamic programming could be used to obtain the exact
routing provided that computer facilities were available to the agency

providing the service.

1v. USES OF OPTIMAL SOLUTIONS

Despite these impressive results, dynamic programming is not
practical for solving the multiple vehicle PUDP. The problem is that
the number of states generated cannot be limited to the extent they can

with the single vehicle case. One can no longer require customers to be
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on one specific vehicle. They could just as casily be assigned to
another vehicle in the optimal solution. Consequently, the cardinality
of F"k’ defined by expression (4.16), increascs significantly, which
translates into a tremendous increcase in the number of fk storage
locations for a given value of k. Results pertaining to the multiple
vehicle PUDP are contained in Chapter VI.

Since the PUDP has not been studied in the literature, with the
exception of the few small problems Psarftis presents, there arec no
standard test problems in the literature against which to comparc
various heuristics. The dial-a-ride service problem, optimally solved
by the dynamic programming algorithm, provides the means to accurately
and precisely test the numerous hecuristics to be discussed in the next
chapter. Having the exact solution is extremely valuable, since the
results indicate that many of the most popular heuristics for the TSI

and the VRP perform very poorly.
V. LIMITATIONS ON DP SOLUTIONS

The results detailed above were attainable because the constraints
could somehow be expressed as a function of stop numbers. This allowed
for only combinations of customers in a partial tour to be considercd.
However, if the exact permutation of the members of a partial tour must
be known to assure that constraints arc not violated, then dynamic
programming will not work. For example, if quantities to be moved are
not unity, it is easy to crecate an instance where one permutation of

stops is feasible, while another permutation of the same stops is

e - e - o~
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infeasible due to vehicle capacity being exceceded. The same is true of

time window constraints if stop numbers cannot be assumed to be good

enough approximations. Similar instances of infeasibility can be easily
created for the quality of service requirement and the operational con-

straints. Consequently, obtaining optimal solutions appear feasible for
only a rather restricted instrance of the PUDP. For the other instances

heuristic solutions must suffice, since no exact solution technique has

yet been found that is effective.
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CHAPTER V

SINGLE VEHICLE HEURISTICS

Not all instances of the pickup and delivery problem (PUDP) appear
to be able to be solved optimally. For those instances which cannot be,
hueristic solutions must suffice. This necessity for reliance on
heuristics was earlier noted for many instances of the travelling sales-
man and vehicle routing problems as well. In this chapter, therefore,

heuristic solutions of the single vehicle PUDP are investigated.

I. OVERVIEW OF HEURISTIC DEVELOPMENT

Type of Instances Studied

Some instances of the PUDP can be efficiently solved optimally as
shown in the last chapter. These instances require that all time
related constraints be expressed in terms of stop numbers, where the
stop number refers to thc number of points actually visited in any par-
tial tour. Capacity must not be a factor, or the other constraints must

be such that customers do not remain on the vehicle long enough for the

{
*] capacity of the vehicle to be exceeded. When these conditions hold,

; dynamic programming can be used to obtain the exact solution. Very

l large single vehicle dial-a-ride service problems can be solved when any
3 practical quality of service parameter, Q, is used.

To say that one heuristic produces solutions that are on average so

‘

-

1 many percentage points better than another heuristic is, by itself, not

too meaningful. If both heuristics produce results that arec over twice

] 86
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optimal, neither heuristic is very good. However, to say that a
heuristic on average produces solutions within so many percentage points
of optimal is meaningful. It provides a precise measure of how well a
heuristic performs. For this reason, the problem instances studied in
this chapter are the same as those studied in the last chapter. This

allows for precise as well as relative evaluation of the heuristics.

Specific Heuristics Studied

Each of the heuristics to be discussed falls into one of the
three broad classes: tour construction, tour improvement or composite.
Because the Clarke-Wright savings technique dominates the commercially
available vehicle routing packages, it was the logical first candidate
for study. Other tour construction algorithms studied include the
greedy approach and an insertion technique. The 3-optimal approach is
the primary tour improvement heuristic investigated, while each of the
tour construction heuristics is combined with the 3-optimal algorithm
to obtain a composite solution.

Each heuristic algorithm is first discussed individually, except ]
for the composite algorithms which require only explanation of the
individual components. The algorithms developed are not straightforward
extensions of those used on either the travelling salcsman problem or
the vechicle routing problem. As was the case with many of the exact
solution techniques, the precedence rclationship is the complicating
factor. Computational results are finally presented which compare the 1

performances of each of the various heuristics. The results clearly

PN 5 sl e vy
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show that tour construction heuristics do not, in general, produce good

results. Again, the precedence rclationship is the primary culprit.
II. CLARKE-WRIGHT HEURISTIC

Starting Point Procedures

The basic Clarke-Wright savings model was developed in Chapter I1I.
For the pickup and delivery problem, the depot or dispatch point is
taken to be the origin, and the first two points are taken to be those

with the largest savings value as computed by
sij = C; + clj - cij (5.1)

which can feasibly be linked together. When time windows are present,

as in a dial-a-ride situation, many points cannot be linked due to the

time requirements involved.

Criteria for linking. Two points can be linked only if their time

windows touch or overlap. It is important to remember that all con-
straints are being expressed in terms of a vehicle's sequence number.
Thus, an example time window of 4 through 7 inclusive for a given point,
representing a customer's origin or destination, would require the

vehicle to visit that point on its 4th Sth ﬁth or 7th

’ bl

stop after

leaving the depot. Let

Sy = {stop numbers in k's time window} ,
k =2,3,...,N. (5.2)

Then points i and j can only be linked if the sct

B ik i Rinadis
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contains all of the stop numbers between the lowest and the highest
values. For example, suppose S, = {2,3,4} and Sj = {6,7,8}. Then

Lij = {2,3,4,6,7,8}. Because stop 5 ¢ Lij’ points i and j cannot be
linked. If i were sequenced at its latest possible time 4, j would have
a sequence time of 5 which is one stop earlier than its earliest time.
Similarly, sequencing j at its earliest time of 6 would require i to be
sequenced at 5, one stop beyond its latest time. Since the Clarke-
Wright heuristic does not allow for the breaking of a link once formed,

the linking of i to j would preclude a feasible tour from ever being

constructed. Further, if

S.NS. =¢p (5.4)

and all elements of Si are less than those of Sj, then i must be linked

to j in a forward manner, i.e.,
1-1-j-1 (5.5)

in the initial partial tour. The same is true if the roles of i and j
are reversed. Suppose Si = {2,3,4} and Si = {5,6,7}. Then §; N Sj =f.
Clearly any tour having i and j feasibly linked would require i in the

4th position and j in the 5th. Any other linking would violate onc of

the time windows.

For other cases, one has a choice. Suppose S, = {2,3,4,5,6,7} and

Sj = {4,5,6,7,8,9}. If i precedes j, then point i can feasibly occupy
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position 3, 4, 5, 6, 7 or 8 in a complete tour. However, letting j

1 precede i limits i to occupy only positions 5, 6, or 7. llence, i

preceding j allows greater flexibility in subsequent construction of
the solution. Therefore, if £ f_lj, then the algorithm has 1 preceding

j in the initial partial tour.

Initial feasibility. Although the above conditions are necessary

for feasibility, they are not sufficient to insure that a feasible tour

can be constructed. If linking i and j precludes the subsequent con-

1 struction of a feasible tour, then i and j cannot be linked. Consider
.; a simple example, with partial data as given in Table 8. Linking i and
: j appears feasible with i in the stop 5 position and j in the stop 6

Al position. However, with i and j in these positions, point b cannot be

feasibly sequenced. Yet the sequenced
l-x-x-x-1-b-j-x-...-1 (5.6)

1 is feasible with respect to i, j and b. The x's represent arbitrary

| other points.

Therefore, in selecting the first two points to be linked, it is

{

' necessary to insure that a feasible final tour can be constructed. When
|
f the constraints are relatively tight, many infeasible linkings are
|
!

likely to have higher savings values than thosc of the points that can

T

be feasibly linked. To ignore feasibility during the construction
. process would almost always result in an infeasible solution. Even if

one had a 90% chance of sclecting a feasible linking at each stage, for
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TABLE 8

EXAMPLE DATA TO DEMONSTRATE THE PROBLEMS
ASSOCIATED WITH LINKING FEASIBILITY




a problem with 15 customers (30 origin/destination points) the

probability of not selecting an infeasible linking (without insuring
feasibility) is less than 5%. Further, insuring a fcasible linking is
not sufficient to guarantee a feasible final tour as discussed above.
Conscquently, the probability of a feasible final tour (without insuring
feasibility) is near zero.

The checking process is complicated and must be accomplished at
each step before a new point is added to the solution. Assuring a
feasible final tour is necessary if the heuristic is to have practical
value. Infeasible solutions are considered worthless. The detailed

explanation of this procedure will be deferred until later in this

section.

Adding Additional Points

Recall that the Clarke-Wright algorithm adds new points, one at a
time, to an existing partial tour. The new point added is alwavs
connected to the origin and onc end of the partial tour. Once two
points are linked, they remain linked. For easc of explanation, at any
step in the process, thosc points which are already in the partial tour
will be referrcd to as in the assigned sct, A. The order in the
assigned set will be that of the partial tour. The point being con-
sidered for addition to the partial tour is the candidate. The candi-
date can be inserted cither in front of or behind the assigned set,

provided such an insertion can lead to a teasible final tour. Thercefore,
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at most two feasible candidates are generated at each step of the
iteration, a front end candidate and a rear end candidate. It is
possible that one, but not both, of these candidates will not exist,
especially near the end of the construction. The partial tour is
expanded by adding to the tour the candidate which has the largest
savings. In this sense, the heuristic is applied exactly in the same

manner for the PUDP as it is for the TSP or the VRP.

Front end candidate. There are three possible ways that new point

i could be the front end candidate, disregarding fcasibility:
* 1 is an unassigned origin, whose corresponding destination
is already sequenced.
+ 1 is an unassigned origin as is its corresponding destination,
but the assigned set is small cnough that the destination can
be sequenced later.
* 1 is an unassigned destination whose origin has not yet been
sequenced.
Checking feasibility is expensive in terms of computational cffort.
However, simple checks can sometimes eliminate a possible candidate
which passes the above criteria and has a greater savings valuc than the
present incumbant. These checks are based on the carliest time that
point i can be served (ci) and the latest time that it can be served
(£i{). Let i be the candidate and j the first element of the ordered set

A, which implies that i would directly precede j. 1If cither

b1
-
A
o]
'
—
—_
[
]
—
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or

e. > R

; (5.8)

hold, then i is not feasible in the proposed partial tour, and can be
eliminated from further consideration. Otherwise, the more complicated
feasibility check is used.

Expressions (5.7) and (5.8) can be illustrated with two simple
examples. First, suppose £; = 3 and ej =5 so that (5.7) holds. 1If i
is placed in position 3, j must be in position 4, which violates ej = 5.
If j holds position 5, i must be in position 4, which violates &; = 3.

Second, suppose e; = Rj = 4. Then i in position 4 requires j in 5,

violating Rj = 4, while j in position 4 requires i in 3, violating

Rear end candidate. There are three possible ways that point i

could be a rear end candidate:
* 1 is an unassigned destination whose corresponding origin is
already sequenced.
* 1 is an unassigned destination whose corresponding origin
has not yet been sequenced, but the assigned set is small
enough that the origin could be sequenced before the first stop.
* 1 is an unassigned origin whose destination has not yct been
sequenced.
Letting i again be the candidate and letting j be the last ordered

el :nent of A, which imples a j-i linking, i can be ignored if either




hold.

Again, two examples will illustrate why these expressions arc true.
First, suppose lj = 6 and e; = 8 so that (5.9) holds. If j occupics its
last possible position, position 6, point i must occupy position 7. If
i is in position 8, j must be in position 7. In both cases, one of the
points violates a time window. For expression (5.10), suppose
ey = £; = 9. Since j precedes i, there is no way both windows can be
satisfied. The situation becomes worse as e¢; increases, i.c., j cannot

J

be served until later times.

Candidatc selection. Suppose that two feasible candidates have

been identified. The one with the greatest savings is added to the
partial tour. If both candidates have the same savings and the front
end candidate is an origin, it is sequenced. Otherwise, the vear end
candidate is added to the assigned set. It is not necessarily possible
to add both the front end and the rear end candidate to a partial tour
in the event of a tiec in savings. Final tour fecasibility can be
destroyed, as was discovered during initial implementation of the

algorithm. In some cases the front end candidate and the recar end candi-

datec are the same point.
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Constructing a Feasible Tour

When only the precedence constraints are binding, it is a
relatively simple matter to construct a feasible tour using the simple
checks. However, when time windows are present, guaranteeing that a
partial tour can be extended into a legitimate final solution is much

more complicated.

Ordering of points. Lemma 3 of Chapter IV, establishes nccessary

and sufficient conditions for the existence of a feasible solution for
one type of the PUDP. Although the lemma is not valid for all PUDP
instances, the nondecreasing ordering of the NLT times is a useful and
reasonable hcuristic for testing feasibility. As before, let P denote
the sequence of points ordered by nondecreasing NLT times. Therefore,
in P cach customer point, origin or destination, has a position number,
which would correspond to the stop number if P were a proposed tour.

One assumes P is feasible so that at least onc fcasible tour exists. If

P is infeasible, the algorithm terminates.

Proposed tour Y. To test feasibility, a complete tour will be

constructed using the alrcady constructed partial tour, the candidate
point, and the ordering P. The complete tour to bc so constructed is
termed Y. The ordering P bhecomes a starting point from which the
proposed tour Y is created. Y is initially a null vector. If the final
Y is feasible, the candidate can be feasibly linked to the partial tour.
If y is not feasible, the proposed condidate is discarded; there is no

assurance that a feasible tour can be constructed.




Concept of Y. Y is constructed one point at a time in reverse

order. Thus, the last position is the first filled, the next to last
position is the second filled, etc. The ordering P is used whenever
possible. P is also examined in reverse order. Thus, the last element
of P not already in Y is first considered to fill the next position. It
may be that other points or the entire partial tour will be added at
this point. The decision is based on assigning each point as late as
feasibly possible, which in turn increases the overall likelihood of a

feasible complete tour.

Latest position in A. Let L represent the position number of the

point in A which has the highest position number in P. It is not
necessary that the point in question be the last ordered element in A.
More often than not, it will not be. Suppose there are 10 points in P
and L = 7. This means that those points in positions 8, 9 and 10 of P
are not yet in the Clarke-Wright generated set A. Therefore, all points
in P with position numbers after L can be assigned identical positions
in Y. The set A may or may not be the next points added to Y. If A
contains origins whose destinations are not in A nor yet in Y, these
must be inserted before A is, to preclude violation of the precedence
constraints. An example test will be used to illustrate the procedurec.
For ease of explanation, the customer points will be assigned letters.
Table 9 gives hypothetical time windows for a problem with N = 11.
Figure 5 depicts the associated sequence P, a given assigned set A,

and the initial assignment of stops to based on L. The fact that

U W o santi o cinc sl
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TABLE 9

HYPOTHET ICAL TIME WINDOW USED TO DEMONSTRATE
TOUR CONSTRUCTION FEASIBILITY

ORIGINS DESTINATIONS
POINT # NET NLT POINT # NET NLT
a 1 4 f 2 5
b 1 5 g 2 0
C 2 7 h 3 8
d 5 10 i 6 11
c 6 11 J 7 12




P = a b f

d e i j

3

4

[

6 7 8 9 10

(a) P: the nondecreasing ordering by NLT times

E

|

{b) Given assigned set A including candidate

(c¢) Initial construction of Y

Figure 5. [Initial construction of the proposcd

tour Y using I,
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L=6 is based on the observation that point h occupies position 6 in
P, whereas the other points, d, e, i and j, which correspond to stops

7, 8, 9 and 10 in P, occupy identical positions in Y.

Destination check. If the assigned set, A, contains origins whose

corresponding destinations are not in A, these destinations must follow
A. Further, if these destinations have position numbers in P less than
L, they are not included in the already sequenced points in Y. Such
stops are inserted, in nondecreasing order of NLT times, before the
points in A are. In the example, destination g, corresponding to origin

b, which is included in A, has a position in P of 4. Consequently, g

is not yet included in Y, but must foilow all clements of A.

Figure 6 (a) shows stop g sequenced.

Flushing out Y. The remaining process places A directly preceding ’r

the first sequenced point in Y, and fills out by taking the as yet
unsequenced stops in the same order as in P. Figure 6(h) depicts the
final proposed tour, which is then checked for feasibility. The cxample
data results in a proposed tour Y which is feasible. Therefore, the
candidate, either c or b, can be added to the partial tour, and will be

it it subsequently represents the greatest savings.

Clarke-Wright Solution

This process is continued until the final tour is constructed.

Final tour feasibility is assured beccause a candidate is added to any

partial tour only if a feasible final tour has actually becn verified.

A R
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Y = g d e i )
‘ 1 2 3 4 5 6 7 8 9 10
o
4
: (a) Y with point z added to previous Y
' :
|
Y = a f c h}b[g d\c\ilj]
| 1 2 3 4 ) 6 7 8 9 10
|
£
\ (b) Final proposed tour
: Figure 6. Continued construction of the proposed
tour Y using P. *
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The final Clarke-Wright solution was also used as an input to the
3-optimal algorithm, thus forming a composite heuristic. Both the
3-optimal algorithm and results of the computational experiments are

presented later in this chapter.
IIT. ROUTE {NSEKTION HEURISTIC

Description of Concept

The route insertion heuri .. combines the philosophy of the
insertion heuristics with the savings concept of the Clarke-Wright
heuristics. One of the explei:ttions offercd for why the Clarke-Wright
heuristic works so well on the travelling salesman problem (TSP) and
vehicle routing problem (VRP) is that the more distant customers are
considered early for inclusion in the tour. This procedurc precludes
expensive, last minute adjustments to sequence these customers. The
route insertion procedure will attempt to incorporate this feature of
the Clarke-Wright model.

The insertion procedures for the TSP and the VRP call for the
selection of the next single point to be added to a partial tour based
on some selection criteria. Because of the precedence relationship of
the PUDP, origin/destination pairs, rather than a single point, arc
selected for insertion into the partial tour. In this manner. the route
insertion heuristic specifically addresses the precedence requirement.
Further, when an origin is sequenced, the vchicle must subsequently
travel to the corresponding destination. Therefore, considering the
locations of both the origin and the destination, relative to a partial

tour, seems both logical and advantagcous.
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Selection Criteria

Pairs are considered for insertion in nonincreasing order of
individual service cost. Individual service means a pair is serviced
directly from the depot and the vehicle returns to the depot upon com-
pletion. For origin i and corresponding destination j, the individual

service cost would be

C;:. + C.. + C

1i ij jl (5.11)

The pair with the highest individual scrvice cost starts the process.
The highest cost pair is taken first so that the most difficult or
costly customers to serve are considered first, just as they were in the
basic Clarke-Wright model. Thus, if pair (i,j)} has the greatest cost,

the initial partial tour would be
1 -i-j-1 (5.12)

where, as before, the depot is designated as the first point. The pair
with the greatest remaining cost is the next pair to be inserted into

the partial tour, and so on.

Insertion Criteria

The next pair is inscrted into a partial tour so as to minimize
the total increase in cost. Two cost formulas apply depending on
whether the new destination is inserted dircctly after its origin, or

at a point later in the partial tour. Figure 7 (a) depicts a partial

tour. Pair (i,j) is to be inserted into this partial tour. Figure 7 (b)
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l-a-b-¢-d-1

(a) Partial tour

i- ]
/ \
b-¢-d-1

One insertion of pair (i,j)

Another insertion of pair (i,j)

Example insertion patterns for the pair
insertion heuristic.
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1 depicts one possible arrangement in which j directly follows i. The

increase in cost is

cC . +cCc.. + C.

ai ij jb = €

ab . (5.13)

Figure 7 (c¢) depicts the more common occurrence where there are
intervening stops between i and j. For this configuration the increase

in cost is

- . Ly - . .14
Cai * €ib Cab * CcJ * ch €ed (5.14)

In either case, the insertion of i and j must be such that a feasible
final tour can be constructed. Insuring that a fcasible final tour can
be constructed from a partial tour is absolutely necessary, as noted

above in the discussion of the Clarke-Wright heuristic. A scmewhat

similar procedure is used to verify the cexistence of such a feasible

tour.

1 Feasibility of Insertion

Rough checks. If point y is inserted directly after point x, point

i ' x will precede y in all subsequent tours, although x will not directly
i precede y if other stops are inserted between them. Let (1,)) be the
| pair to be inserted and let a-b be the two points between which 1 is
» to be considered for insertion. Then i cannot be feasibly inscrted

between a and b if either
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or

e. —>—Rb . (5.10)

Both represent configurations that cannot possibly be feasible.
Similarly, let c-d be the two points between which j is to be considercd

for insertion. Then j cannot bec feasibly inserted if either of the

following hold:

eCin s (5.17)
or
TERS (5.18)

More complicated check. When the rough check indicates that a

given insertion may be feasible, a somewhat more complicated check can
be used. This check insures relative feasibility among the elements
of the partial tour which includes the pair currently being inserted.
Let k represent the difference between the position arbitrary point b

occupies in the partial tour and the position point a occupies. If

c1 + k > lb (5.19)

for any a and b in the partial tour where a precedes b then the partial

tour cannot be feasibly cxtended.
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Detailed Feasibility Check

When a proposed insertion passes all of the above checks it is
still possible that a feasible tour cannot be constructed. Therefore,
a complete tour is generated using the ordering P discussed earlier. If
this tour is feasible, the proposed insertion positions replace, or
become, the incumbent positions. In either case, the next set of
positions are then checked and the process repcated until the feasible

positions that minimize either (5.13) or (5.14) are found.

Difference in concept. The primary difference between checking

feasibility with route insertion and with the Clarke-Wright approach is
that with route insertion only the order within the partial tour A must

be preserved. With Clarke-Wright, the entirc set A was sequenced as a

block.

Construction of Y. A complete tour Y is constructed and then

checked to see if it is fcasible. Y is constructed one point at a time
in reverse order using P and the ordered sct A. [lements from set A are
sequenced in Y when they are the last clement and normally appear in the
reverse sequence of P or when the last element of A must be sequenced

to preclude violation of a 'not earlier than'" requirement.

Modification of e¢;. When points appear in a partial tour, the

earliest time one stop can actually be visited may be altered by a pre-
vious point. For example, consider the partial tour a-b-c-d, and

suppose e, is greater than any of the other times. Recall that all time

W
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windows are detfined by the stop numbers of the vehicles route.  Thus,
direct travel between two points requires onc stop. Then the carlicest
that b, ¢ and d can be visited is ey+l, ¢, +2, and ¢,+3 respectively.

Were any of these points visited carlier, ¢, would be violated. For
example, if a tour were being constructed in reverse sequence, stop d
must be scquenced by the ey +3 position (appear in the tour at ¢,+3 or

later) or ¢, will be violated. The concept of adjusting ¢;'s is uscd

in constructing Y.

Example Y. Consider the example P given in Figure 5(a), on p. 99,

and time windows defined by the data in Table 8§, on p. 91. Supposc
that the partial tour, made up of two pairs, is
1 -b-d-p-1-1 {5.20)

Table 10 gives the revised not-carlier-than times tor ecach of the

points in the partial tour. Note the times have changed for points g

and 1. Figure 8 gives the step by step construction ot Y.  Steps |

insert the last three elements of P. At step 3, d is not added to Y

because g, not d, is on the end of the not-yet-scquenced points in A,
Theretore, h, the point preceding d in P, is inserted at this step.

At step 5 and 6, g and d arce inserted hecause of their adjusted not-

earlicer-than times. The remaining points are inscrted based on their

position in P. The final Y is scen to be feasible. A forward con-

struction using adjusted not-later-than times could also have been used,

At i e
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TABLE 10

REVISED NOT EARLIER THAN TIMLS FOR THE POINTS
IN A FOR EXAMPLE PROBLIM

POINT # NET
3 b 1
d 5
8 6
i 7
|
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1 2 3 4 5 § 7 8 9 10
]
2 i J
3 e i j —1
S N - od
4 h W e i ] j _J
- oo
5 g h e i j
A —4 - -~ — J
6 d g h e
D (RSN S . ,
7 C d g h e i i
— - e
8 f c d g h ¢ i 3
U S— - EE - S ——
[ T [~
9 b f c d g h e 1 i J
— e -
10 a h f c d g h e i j
1 2 3 4 5 0 7 8 9 10
Figure 8. Step by step construction of Y.
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IV. GREEDY HEURISTIC

The "greedy" or ''nearest neighbor' heuristic is significantly
simpler to implement than either the Clarke-Wright or the route
insertion algorithms. One begins at the depot and always proceeds to

the closest point which can lead to a feasible completion.

Candidate Set

At each step, a candidate set is identified. Initially, the
candidate set is made up of all origins that can be visited during the

first time period, i.e., all

jeo 3 €; <2 . (5.21)

The closest origin is added to the tour. Its destination, if feasible,

and all

j£0 3 e, <3 (5.22)

are added to the candidate set for the next stop. So long as a feasible
complete tour can be attained, this process continues until all customers
are scheduled. The candidate set at cach point consists of unsequenced
origins and of unsequenced destinations whose corresponding origins arc
sequenced, both of whose time windows overlap the next stop number.
Arbitrary seclection of the nearest point among this set will not

necessarily lead to a feasible tour.




Feasibility Check

The nearest neighbor is sclected from the candidate set and a trial
complete tour Y is constructed. If Y is feasible, the point selected
is added to the tour. If Y is not feasible, the point is removed from
the candidate set and the process repeated until a feasible point is
found. As before, the sequence P is used, this time in a forward
manner. The k stops selected by the greedy procedure become the first
k stops in Y. All remaining stops are then sequenced using the same

relative order as these stops have in P.

Random Feasible Tours

The candidate set and feasibility check used for the greedy
heuristic were also used with a random sclection of the elements from
the candidate set. These tours were used as a random input to the
3-optimal heuristic. The greedy as well as the randomly generated tour
results will be discussed after the tour improvement heuristics are

examined.
V. TOUR IMPROVEMENT HEURISTICS

A-Optimality

The X-optimal heuristic of Lin and Kerninghan, discussed in
Chapter II, is one of the most powerful hecuristics available for use on
the travelling salesman problem and the vehicle routing problem. One of
the keys to the computational efficiency of thc algorithm is that

profitable reconnection patterns are pursucd only if it is possible to
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actually exchange the A arcs and obtain a feasible solution. Insuring
feasibility is relatively easy for the TSP, but much more complicated
for the PUDP.

Consider the example depicted in Figure 9(a). There is no
possible way to remove two arcs and reconnect them in a new pattern such
that a new tour satisfies the precedence requirements., Yet Figure 9(h)
shows a feasible 3-optimual reconnection. The A-optimal approach, which
only continues if the arcs already removed can be feasibly rejoined,
would have stopped at » = 2 and never have investigated the configura-
tion shown in Figure 9(b).

One should note that for a directed TSP tour, no 2-arc cxchanges
are possible. A directed TSP is a TSP on a directed network, i.c.,
arcs only go in one direction between nodes. The 2-arc reconnection
pattern, shown carlier in Figurce 9, requires one of the ~aths remaining
after the arcs are removed to be traversed in the reverse direction.
Since reverse arcs do not exist in the directed network, no 2-are
exchanges are possible. Two-arc exchanges are quite Libely an the Funpe,
Traversing paths in a reverse direction is not probibited in the Puppy
unless doing so violates a precedence constraint or one ot the time
window constraints. Traversing paths in the reverse direction is
discussed in greater detail later in this chapter as part of the
discussion of an r-optimal algorithm. The implication of this
discussion is that therc is no way of knowing a priori whethor or not

the removal of more arcs will eventually produce feasibility., The

situation depicted in Figure 9¢a) is a fairly common occurrence.
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1
(a) No 2 arc exchange possible. (b} A fecasible 3 arc exchange.
Figure 9. The problem with precedence constraints 1

and h-optimality.




When the problem constraints are relatively tight, many

reconnections will appear profitable from a cost savings point of view.

Therefore, the alternative of continuing until no more savings are
possible and then testing feasibility would be both inefficient and
ineffective. No other alternative was found that allowed for modifica-
tion of the A-optimality concept so that it could be applied to the
PUDP. This is yet another example of how the preccdence constraints of
the PUDP complicate or relegate ineffective solution techniques that are

very powerful when applied to the TSP or the VRP,

r-Optimality

The concept underlying the r-optimal beuristic was presented in
Chapter II. A 3-optimal algorithm was developed and used to solve the
PUDP. The 3-optimal heuristic was used on randomly generated feasible
tours as well as in conjunction with solutions generated by the tour

construction heuristics.

] Order of complexity. For the TSP, the r-optimal heuristic is of

order NY, where N is the number of problem nodes. For the PUDP with a
{:‘ fixed quality of service parameter Q, the algorithm can effectively be
used in order NQr'l. Recall that Q is the maximum difference between .
pickup and latest delivery for a customer. The recason for this is that
it is highly improbable that a feasible rcconnection pattern cxists

when the difference between the first arc removed and the last arc

L removed is greater than or cqual to Q arcs. In fact, in all of the
problems run, not once was a better solution obtained by considering

1 ’ more than a span of Q arcs.
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Figure 10 depicts a span of Q arcs using a hypothetical tour. In
this figure, letters represent the points visited and numbers the
connecting arcs. Suppose (=5 and arc 3 is the first arc removed.
Then the remaining two arcs can be selected from among arcs 4 through 7.
The question of feasibility provides an insight as to why such a
reduction in computational effort is possible. Notwithstanding,
Figure 11 shows a contrived example where a span of 2Q-1 arcs results
in a feasible reconnection pattern. In the figure, Q=4; the points
represent either all origins or all destinations; the squares the
beginning and ending points for the six arcs in the span; the numbers
inside circles the position number for a point in the tour; and the
paired numbers the applicable time windows. Each point represents
either an origin or a destination. Consequently, the time windows
contain Q stops, not the Q+l stops which define the time window for the
pair. This is true becausc Q is effectivelv the difference between

the latest delivery and the earliest pickup for a given customer.

Feasibility and reverse tours.

Figure 12 is a copy of Figure 3,
p. 28, previously discussed in Chapter Il. Note that only in
reconnection pattern (2) are all paths (dark lines remaining after the
arcs arc removed) traversed in the same forward direction as is the

original, feasible tour. [In all others, at lecast one sequence of stops

is traversed in the reverse order. In patterns (1) and (S), both paths

are traversed in reversc order. Because of the precedence requirements

of the PUDP, reverse paths place very stringent requirements on the

e i i aba o st - B




il it A

|

? 117
1
!
X 9-12 10-13

-4 O----m-- - hae “‘\\\\

| ® ® W)

| § 11-14
g O
. !
N !
g ]
X 9-12
¥
A ®, ™ ©
Y = S —
N L 11-14 10-13

FY

(a) Initial tour with 3 arcs removed

SO,
@ 9-1- 10-13

- <
i

‘ @ @ 11-14
‘ (b) New tour after rcconncction
Figure 10. Example of a 2Q-1 feasible

. reconnection pattern for

. Q=4.
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(a) 2-optimal

(b) 3-optimal

Reconnection patterns to explain
why a span of Q arcs is
sufficient.




i points that can be legitimately included in these paths. Any set of
!
t

points to be traversed in reverse order cannot feasibly contain an
origin/destination pair. Also, interchanging the relative order that
the disconnected paths arec to be traversed restricts the permissable
location of a corresponding destination. For example, in patterns (4)
and (5), any origin among the points between 4 and 5 must have its

destination at or beyond point 6.

Feasibility and timing. Becuause of the assumed time windows

associated with each customer point, many reconnections result in one
or more time windows being violated. For example, if any of the stops
from points 2 to 3 are already scquenced at their not-later-than times,
patterns (2), (3), (4) and (5) will all result in that stop being
visited at a later time. For noncontrived problems, many solution
points are scquenced at or near one end or the other of their
respective time windows. Consequently, slight shifts, imposed by the
various reconnection patterns, can result in a violation of the time
window. For this reason, a span of Q stops was sufficient to obtain

the best 3-optimal tour with a very high probability.

Checking feasibility. A proposed tour Y is constructed and then

checked for fecasibility. Because any tour presented to the 3-optimal
algorithm is required to be feasible, it is only necessary to check
that portion of Y between points 1 and 6 to determine if the entire tour

if feasible. The check insures that the origin precedes its

corresponding destination and that all time window constraints are

P




satisfied. When a feasible improvement is found, this solution

replaces the incumbent and the algorithm is repeated. When no improve-
ment can be found for an entire tour, the current solution is the
3-optimal solution. Despite the restrictions imposcd on the reconnce-
tion patterns by the precedence and time window constraints, the
3-optimal algorithm was clearly superior to all other heuristics

tested.

V1. COMPUTATIONAL RLSULTS

All of the heuristics discussed above were tested using randomly
generated data. In addition, the urdering P was used as an initial
feasible solution for the 3-optimal algorithm. Therefore, the 3-optimal
approach was used both as a tour Improvement heuristic and in conjunction

with one of the tour construction heuristics as a composite heuristic.

Heuristics Verses Optimulity

Data. When time windows arc present, as in the dial-a-ride service
problem, optimal solutions arc readily available which can be used to
compare various heuristic's effectiveness. Table 6, on p. 81, contains
the not-later-than times used for defining the time winlows. Table 11
presents the solution values for 10 problem instances. The instances
are different in that the location of each point, cither an origin point
or a destination point, is randomly generated. Conscquently this
results in entirely different cost matrices. Costs arc again computed

using the rectilinear metric., The data in Table 11 assume a quality of
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service, Q, of five stops and no restriction on maximum waiting time,

{ M. Later, varying the quality of service parameters is examined.

Tour construction comparison. The data indicate that none of the

tour construction heuristics perform particularly well. While the

; average performance on the ten problems is in the neighberhood of 12%

A

over optimal, there are several cases where solutions of 20% or more
P s

above optimal are obtained. Clearly, therc is nothing to indicate that

a 50

any of the tour constuction heuristics is superior to another. These
results are interesting in that the Clarke-Wright hecuristic, which has
shown such considerable success on the related TSP and VRP, performs so
poorly on the more heavily constrained PUDP. Also noteworthy is that
the fairly simple greedy procedure produces results that are on an

- average as good as the other more complicated tour construction
heuristics. An explanation, which again related to the precedence

relationship, is offercd beginning on page 129,

. Tour improvement and composite heuristics. The 3-optimal heuristic

applied to the ordering P unquestionably produces better results than
any of the tour construction heuristics. In fact, these results are
equal to those of the composite heuristics. On average, the 3-optimal
procedure on any given fecasible tour produces results within 3% of the
optimal solution, although some of the 3-optimal solutions are more than
10% above optimal. When the best of five 3-optimal solutions is used

the results are on average within 1% of optimal. The five initial

feasible tours are randomly generated. These results are considered
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excellent, but the computational effort is five times as great as
finding the 3;optima1 solution from the ordering P. There does not
appear to be any rationale for using a composite hcuristic. The cxpense
of finding the initial feasible tour by one of the tour construction
heuristics is too great, and offers no apparent advantage over the

simpler techniques.

Varying Service Paramecters

The results discussed above assumed a quality of service of five
stops and no special restriction on early arrivals (Q=M=5). The
question next to be addressed is how altering these parameters affects
the efficiency of the heuristics. Tables 12 thru 15 present solution
data for: (1) Q=M=11; (2) Q=11, M=6; (3) Q=7, M=J; and, (4) Q=5, M=3
respectively. The cost data and not-later-than times for the destina-
tions are identical to that used to obtain the data discussed above.
Therefore, all solution differences are directly attributable to

changes in the service parameters.

Comments on results, As the constraints become less binding, the

tour construction heuristics perform even more poorly. Solutions of
more than 50% above optimal were obtained. The 3-optimal heuristic
also showed some deterioration in effectiveness as the constraints were
relaxed. However, the average results were still within 5% of the
optimal. As before, there is no advantage to using any of the tour
construction heuristics in a composite mode. The 3-optimal algorithm

applicd to any feasible tour performs as well as any of the composites.
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4 Large Problems
It was anticipated that the basic results discussed above would
‘ ' carry over to large scale problems. Table 16 verifies this fact for

I

three problems with N=91, Q=7 and M=4. The best of the five 3-optimal

solutions again produced excellent results that were within 2% of the

optimal value.

rin i, SN

Analysis of Results

PR
S, — -

The precedence requircment is deemecd to be the primary culprit

5 2R

which renders the tour construction heuristics ineffective. Because

N At

each of these heuristics constructs tours which maintain either actual
or relative order, the order becomes locked in. Not only is the point
being sequenced locked into a given relative order, its corrcsponding

pair-mate is also. Only in the pair selection heuristic is the cost

of sequencing the pair-mate considered at all when attempting to
sequence a given point. However, based on the empirical data, even
explicitly considering such costs is not necessarily effective.

Figure 13 depicts an example of how the precedence requirement
might lead to problems with the Clarke-Wright or greedy heuristics. In
| ' panel (a) one supposes that a partial tour, depicted by the dark line,
| has been constructed and origin i is determined to be the next point to

be added to the tour. Because of the location of i's corresponding

f destination, j, the tour must at sometime rctrace itself in order to

visit stop j, as shown in panel {b). Stop j would not scquenced until

. it was absolutely necessary to do so. Panel (c¢) presents another

possible partial tour which is clearly much cheaper.

—
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Depot

{(a) One partial tour

(b) Adding j to (a)'s tour

7

j I ‘.

Figure 13.

e -
Depot

(¢) Another partial tour

Example of how the precedence requi
can result in higher than necessary

tour costs.
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For the pair insertion heuristic, Figure 14 presents an example of
the possible problems. Panel (a) depicts a partial tour. Pair number
3 is the next pair to be added. Panel (b) shows the insertion of 03
and D3 into the partial tour in the prescribed manncr. Panel (c) shows
another partial tour, which is obviously supcrior to that depicted in
pancl (b). Because the relative order of D) preceding 0> in panel (a),
the configuration in panel (c¢) could never be obtained, since the
relative order there has 0, preceding Dy,

Because of the problems created by the precedence requirement in
attempting to construct a tour point by point or pair by pair, it is
considered doubtful that any tour construction heuristic could be
developed that is superior to the 3-optimal heuristic. Further, the
3-optimal heuristic is morc efficient in terms of computational etfort.
Therefore, any further attempt to develop tour construction heuristics
for the PUDP is not recommended. In Chapter VII subject arcas that

appcar to be much more promising for further rescarch arc suggested.
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(a) Tour with pairs 1 and 2 sequenced

3
N b2
O2 7 <
(b) Pair 3 added to pancl (a)
I
Dl
b,

(c) A superior tour for pairs 1, 2 and 3

y -

Figure 14. An example demonstrat ing pair
insertion probloems.




CHAPTER VI

MULTIPLE VEHICLL PROBLLEM

In this chapter, the algorithms used in the previous chapters to
solve the single vehicle pickup and delivery problem are extended to
the multiple vchicle case.  The multiplc vehicle problem is more
difficult to solve than is the single vehicle problem. This is truce
both for exact and heuristic solutions to the problem. Lxact solution
to the problem, using the dynamic programming algorithm detailed in
Chapter 1V, is first discusscd. Then some of the heuristic solutions
detailed in Chapter V are examined.

I.  EXACT SOLUTION TC THE MULTIPLL
VEHICLE PROBLEM

The discussion contained in Chapter IV supgested that dynamic

programming was the only ecxact solution algorithm that appeared
promising ftor optimal solution of the single vehicle PUDP.  The inherent
complexity of the problem was the primary rcason that other techniques
were determined to be ineffective. Because the multiple vehicle PUDLP

1s even more complex than the single vehicle version, these same

arguments appear to apply cven more strongly. Therefore, only dynamic

programming was considerced tfor extension to the multiple vehicle case.
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Dynamic Programming Lxtended to the

Multiple Vehicle Problem

Very large single vehicle PUDP's were solved using the dynamic
programming algorithm developed in Chapter IV. The key factor that
allowed for such success was that all problem constraints werc assumed
to be expressable in terms of stop numbers. The state space could,
therefore, be drastically reduced by only generating feasible combina-
tions. A binary representation vector was uscd to identify the specific
customer points that comprised each of thesc vectors. The state spacce
cannot be as drastically reduced in the multiple vchicle problem. In
fact, given a reasonable quality of secrvice parameter, Q, the constrained
problems that can be optimally solved are ncarly identical to their
unconstrained couterparts. The reason for this lics in the manner in
which the state vectors are generated and then used to determined the

optimal solution.

Solution on an expanded network. In Chapter I, the solution of

the multiple travelling salesman problem on an c¢xpanded network wis
discussed. The same technique can be used for the PUDP.  The only
special precaution necessary for using the dynamic programming algorithm
is that one of the points representing the depot can only be considered
for the lead position it the set S contains nothing other than origin/
destination pairs an' possibly points representing the common depot.

This insures that a customer is not picked up by onc vehicle and

delivered by another.
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Instances of interest. Consider the situation where cach vehicle

is to provide service to an cqual number of customers. Therctore, the
number of customers is assumed to be an integer multiple of the number
of vehicles. For example, if there were five vehicles, then there
would be either 5, 10, 15, 20, 25. . .customers. Given this scenario,
those values of k where the lead position in the dynamic programming
state vector is to be a depot point are well defined. Suppose there
were 25 customers to be assigned among the five vehicles. Recalling
that k represents the total number of points considered for inclusion,
the lead positions would be the l1th, 22nd, 33rd, etc. There arc ten
positions to accomodate five pairs prior to the first depot point (one
route); 21 positions to accomodate two scts of five pairs and the tirst
depot point prior to the second depot point (two routes); ctc.
Although this problem could be solved on the expanded network, as
suggested above, a simpler method i1s availablie for this instance that
requires considerably less storage than does solution on an expanded
network. Unfortunatecly, cven the simpler method requires too much
storage for the solution of problems with more than about 10 origin/

destination pairs.

Storage requirements for expanded network solution.  Suppose only

the precedence constraints are binding. Let b represent the number of
origin/destination pairs assigned to a vchicle and recall that n is

the number of origin/destination pairs. 1In the example above with tive
vehicles, n = 25 and b = 5. Thesc data will be used at cach step to

illustrate the computations.




First, consider the number of storage locations for Kk values

directly preceding k = 2b + 1 or 11, which is the point at which one of
the depot points is first considered for the lead position. lor
k = 2b or 10 there are

n-1
n (6.1)

b-1

storage locations required for the f;, values. The lead position must
always be one of the n origins. Expression (6.1) is based on n possible
origins visited immediately upon departure from the depot and the
n-1 taken b-1 ways of selecting the remaining customers to be serviced
by one of the vehicles. Thus, the example data result in

24

25 = 265,650

4

required locations. For k=2b-1 or 9 and an origin in the lcad

position, the storage rcquired is

n-1 n-b+1

b-2 1

In terms of the example, this represents 25 choices of the lead origin,
24 remaining pairs taken 3 at a time, and onc choice among the 21
remaining destinations. This destination is not a match to one of the
origins being considered, but would match the origin sclected subse-

quently at the k = 10 iteration. The value of this computation is
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1,062,600. If a destination were the lcad, the recquired storage would
be the same as that given by expression (6.1). In the example, the
required storage would be 1,002,600 + 265,650 = 1,328,250 for k = 9.
Considering k = 16 in this samec cxample, the storuage required for just
the f¢ values would be in excess of 68 million storage locations.
Clearly, practical solution to the multiple vehicle PUDP on an expanded
network 1s limited to rather small problems.

Alternative Solution Using
Dynamic Programming

In the above discussion, once all of the f’b+1 or fl1 values are

computed, the data neccessary to solve the problem is at hand. This is
so since the fyp,] values represent the cost of all feasible tours of
the n customers taken b at a time. In the example, the f11 values
contain data on all combinations of customers taken 5 at a time. Given
5 vehicles being used, the optimal solution is found by taking the 3

f11 values whose sum is minimal and whose combined individual state
vectors indicate that service is provided to all customers. In general,
this can be accomplished by a direct comparison of all of the fan.,
values and their binary representation vectors. The FORTRAN routine

to accomplish this requires V nested DO loops, where V represents the
number of vehicles. Lach loop corresponds to one of the vehicles, and
an assignment of customers to that vehicle comes from the identification
vector. Suppose V = 2 and the customers set is {1,2,3,4,5,01).
Therefore, three customers must be assigned to cach vehicle., If the

identification vector for the first loop associated with a specific
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£, value identifies the set {1,3,4}, while the one for the sccond
identifies {2,5,6}, their combination results in service to all of the
customers. Furthermore, if the sum of the two f7 values is minimal with
respect to all other feasible combinations, the two optimal routes can
be solved for individually, each as a single vehicle problem, thus
solving the two vehicle problem.

The range of the exterior loop is over the number of topsp values.
For the earlier example above, there would be five loops, cach with an
initial range of approximately 265,650. Let F = {f2b+l values}., At
first look, it might appear that this routine requires on the order of
IFIV comparisons or 265,650° = 1.323 x 10?7 comparisons. llowever, the
inner loops need not be entered unless there is a possibility that the

optimal solution is contained within,

Requirement for no overlapping customers. The representation

vectors identify the customers serviced by cach one of the |F| indi-
vidual tours. If the same origin/destination pair is known to be in

any two of the loops, then therc is no way that a feasible solution can
exist. 7The reason for this is that each loop, in effect, assigns
exactly b(N/V) customers to a vehicle. 1f the same customer is assigned
to more than one vehicle, it must be true that at least one customer is

not assigned to any vchicle. Let

Ry = representation vector of the ith individual tour, {b.3)

Suppose V > 3, then if
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.4
R, n Rj 3] (6.4)

for the first two loops, the sccond loop can be immediately incrementud
since at least one origin/destination pair is contained in both partiul
tours. In terms of the previous example where n=25, V=5 and b=5,

if one customer pair showed up in the intersection, the first two loops
provide assignments for only 9 customers. The best that the three
remaining loops could do is provide assignments for 15 more. Conse-
quently, one customer is not assigned to any vehicle, and the solution
is thereby infeasible., 1f the intersection is null, a feasible complete
tour can be found and the third loop is entered. Let Ry be a vector

for this third loop. Now, if

(Ri NRE) U (Rj NRg) # ¢ (6.5)

the third loop is incremented and another Ry selected. Otherwise the
fourth loop is entered. Finally, the Vth loop is entered, a representa-
tion vector is found such that all customers arc serviced. This repre-
sents a feasible solution and the cost of this solution, represented

by the V f,,,, values, is computed. If the valuc of this solution is
better than the incumbant, it becomes the new solution. The innermost
loop is then incremented until another solution is found or until the
loop paramcter is exhausted. These basic steps are continued until the

lowest cost feasible complete tour is found.
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FORTRAN intersection. Graves (20) provides techniques for

performing logical operations in FORTRAN without recourse to assembly
level routines. His approach is an order of magnitude quicker than

using an assembly level routine since it eliminates several storage and

retrieval operations for register values as the program shifts control
from the main routine to the subroutine and back again. The
EQUIVALENCE statement is the Key as shown in the following algorithm
which computes the binary intersection A of two representation vectors
B and C and prints out the decimal equivalent:

INTEGER A,B,C

LOGICAL*4 LA,LB,LC

EQUIVALENCE (A,LA), (B,LB), (€. ()

LA = LB.AND.LC

PRINT A
Thus, if A = 0, the intersection is null. If A # 0, two or more
origin/destination pairs are continued in both B and C. Identification

of which pairs are redundant could be found by converting the decimal

value of A into its binary equivalent.

Limitation on Problem Size

As mentioned above, exact solution to problems with more than about

ten origin/destination pairs is not practical in the case of the

multiple vehicle PUDP. Time windows can still be used to determine

those points which are valid condidates for the lecad position or which
are eligible to be used to complete a given state vector. They cannot
be used to require points to be included in the completion of a state

vector. A point which, if not sequenced would preclude anv teasible
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solution in the single vehicle problem, can be assigned to any of the
V vehicles in the multiple vehicle case. For the alternative solutions
approach discussed above, there is never an instance where 4 point must
be included. The feasible state space is also larger due to the fuct
that the candidate set for the lcad position 1s approximately V times
greater than it is for the single vehicle problem. Conscquently, the
number of feasible states for cach value of k and choice of lead is

considerably greater.

Computational Results

Table 17 prescnts typical results for various sized problems. Only
the precedence constraints werce binding. The largest of these problems
actually solved involved only nine origin/destination pairs and three
vehicles. This equates to a 21 point multiple travelling salesman
problem on an expanded graph. Attempting to add onc more customer per
vehicle resulted in exceeding a five minute execution time limit. In
fact, the limit was excceded during the computation of one of the
9,900 f¢ values. This means the problem was less than one half solved
at the time of termination, since storage requirced up to and including
fg is only 14,994 locations.

Constrained problems produced very similar resuits. The 12
customer, 3 vehicle problem was too large to solve. Using a value of
Q=5, the time windows for the remaining problems are very similav to
those for an unconstrained problem. Conscquently, the number of feasible

states generated is not significantly reduced.  Table 18 provides a side




TABLE 17

SELECTED OPTIMAL RESULTS FOR THE MULTIPLE VEHICLE
PICKUP AND DELIVERY PROBLEM

NUMBER NUMBER RUN
OF OF STORAGL: TIME
VEHICLES CUSTOMLRS REQUIRLED (SEC)

65

6,337
157
2,566
39,414
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TABLLE 18

COMPARISON O TIME WINDOWS FOR CONSTRAINLD VERSUS
UNCONSTRAINED VERSION OF THRLE VEHTCLE,
NINE CUSTOMER TUDbP

(a) {(b)
UNCONSTRAINED CONSTRAINED
EQUIVALENT Q=5
ORTGINS DESTINATIONS ORTGINS DESTINATIONS
4 NET NLT # NLET NLT NET N1 = NETONLT
2 1 5 11 2 O 1 3 11 2 4
3 1 5 12 2 6 1 3 12 2 4
4 1 5 13 2 6 1 1 13 2 )
5 1 ) 14 2 0 1 4 11 2 5
6 1 5 15 2 §) 1 g 15 2 5
7 1 5 16 2 6 1 5 16 2 G
8 1 5 17 2 6 | 5 17 J O
9 1 5 18 2 6 1 S 18 2 0
10 1 5 19 2 6 1 5 19 2 0




by side comparison for the 9 customer, 3 vehicle problem. While the
unconstrained problem required 2,566 storage locations, the constrained
counterpart requires 2,128 locations. Conscquently, optimal solution
to any real world multiple vchicle problem is not deemed practical.
The state space becomes too large, just as it does in the travelling
salesman problem.

II. HEURISTIC SOLUTION TO THE MULTIPLE

VEHICLE PROBLEM

The multiple vehicle PUDP was shown in the preceding section to be
more difficult to solve optimally. It is also more difficult to obtain
a good solution by means of a heuristic, although a precise measure of
"goodness" is difficult because only small problems can be solved
optimally. For the single vchicle problem, the 3-optimal heuristic
produced solutions generally within a few percentage points of the
optimal solution. As will be scen below, the 3-optimal technique is
severely limited because of the precedence relationship in the multiple
vehicle problem.

The key to good solutions in the multiple vehicle problem is
determining which vehicle customers should be assigned to. Once
customers are assigned to a given vehicle, the problem reduces to V
single vehicle problems for which optimal or very pood solutions arc
readily attainable. Several attempts were made to determine a good
method to make such assignments. The results arce somewhat discouraging

as will be seen later. Consequently, the multiple vehicle problem

appears to remain relatively unsolved.
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Clarke-Wright and Pair Insertion

Two of the tour construction heuristics discussed in the last
chapter were the Clarke-Wright savings heuristic and the pair insertion
heuristic. Both of these hcuristics were expensive in terms of compu-
tational effort and performed reclatively poorly. Other heuristics
produced much better results. ‘Therefore, neither of these approaches

was pursued as a possible solution to the multiple vehicle problem,

Greedy Heuristic

The greedy heuristic is also a tour construction heuristic, but is
much less expensive computationaily. The heuristic also has the
advantage that it is easily understood and can often be implemented
manually. Therefore, the greedy heuristic was sclected to determine how
well a tour construction heuristic performed on the multiple vehicle

problem. The results were surprisingly good.

Construction concept. There are two wayvs that tours could be

constructed using the ncarest neighbor concept. Onc would be a
sequential approach where vehicles are dispatched one at a time. In
this case, 1/V of the customers would be assigned to the first vehicle
before the second is dispatched. The sccond approach dispatches all
vehicles at the same time and builds routes simultancouslty. The latter
approach was used for the multiple vehicle PUDP, since it produced
individual routes of ncarly equal length. The tormer method tends to

produce at least onc relatively short route and at least one relatively

long route which may be undesirable.
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bescription of algorithm. Initially, the V ncarest origins to the

depot which satisfy the time window constraints are assigned one ecach to
the V vehicles. Then a sccond stop is determined for all the vehicles,

followed by the third, fourth, etc. A candidate set is used to

identify all unsequenced points that satisfy the time window constraints.

For each vchicle, the next nearest feasible ncighbor from this candidate
set is added to the partial tour, provided a check, made to insurc that
adding the nearest neighbor will result in a feasible tour, is

successful.

Feasibility check. Insuring that points added allow for a feasible

set of individual tours is essential for the multiple vehicle problem,
just as it was for the single vehicle problem. The construction or
flushing out of the partially completed tours is a bit more complex in
the multiple vehicle problem. The nondecrecasing ordering P is used,
just as in the single vehicle case. The next element of P, not alrcady
sequenced by the greedy sclection, is placed on the vehicle with the
fewest elements unless it is a destination. Destinations must be
placed on the same vchicle as their corresponding origins. Fach of

the V individual tours is then checked to verify that it is feasible.
Unless all V of the tours arc feasible, the ncarest neighbor being
considered for addition to onc of the tours 1s not added. Rather it is

removed from the candidate set for that vehicle and another candidate

(the necarest remaining feasible necighbor) is sclected and the tfeasibility

check repeated.
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Optimal individual tours. Once ull V tours have been constructed,

it is often possible to determine the optimal routing for each tour.
This is possible when all problem constraints are expressable in terms
of the vehicles' stop numbers as discussed in Chapter IV. The greedy
solution identifies which pairs are on each vehicle, thus detfining V
single vehicle problems. If the constraints are expressed in a manner
such that the dynamic programming algorithm can not be used, or if

the problem is too large for the dynamic programming algorithm, the
3-optimal heuristic can be applied to the greedy solution. These :

techniques were applied to all of the problems studied herein.

Greedy look ahead. The basic greedy algorithm is myopic in that

one selects the nearest neighbor without thought of where the tour will
next go. The precedence requirement of the PUDP necessitates subscequent
travel to the as yet unsecquenced destinations. It was conjectured that

by considering (minimizing) the distance over the next two points that

a better solution could be obtained, especially in terms of which pairs

were assigned to which vehicle. The basic preedy algorithm is an order

-

Z algorithm, where Z represents the cardinality of the current candidate

set. The look ahead greedy is approximately an order Z° algorithm.

Results indicated no appreciable difference between the greedy and the
look ahecad greedy. Theretore, the look ahead versicen was not tested

turther. The heavier computational effort could not be justitied,
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r-Optimal leuristic

Limitations. The results of Chapter V clearly showed the
superiority of the 3-optimal heuristic when compared to any of the tour
construction heuristics. However, the precedence constraint nullifies
much of the effectiveness of the r-optimal heuristic when applied to
the multiple vehicle problem. The solution presented to the 3-optimal
algorithm is on an expanded network. Since a very good (if not optimal)
solution can be obtained for the individual tours, interchanging arcs
between tours and thus creating a change in the customers assigned
to a given vehicle is what is desired. The problem stems from the
necessity that both the origin and destination he on the same vehicle.
For the pickup and delivery problem, this requirement can only be met

when the vchicles are cmpty, as i1s shown below.

Reconnection pattern.  The crux of the problem can be readily seen

by considering a 2-optimal example. In Figure 153(a), the two indi-
vidual tours, ecach with an arc removed, are shown side by side.  The
four (E)‘S all represent the common depot, and the individual tours
begin at the bottom and proceed upward. EBuach letter represents the

set of points hetween the depot and a removed arc. Figure 15(h)
depicts the only available reconnection pattern. Let i and § represent
an origin and its corresponding destination respectively.,  Vor the

configuration in Figure 15(a) to be initially feasible the following

conditions must hold:
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iEA  =>  JE(AUB) , (6.6)

k€ =>  je(Cub) , (6.7)

jeB  =>  1e{AUB) , (6.8)
and

jeb  =>  ig(CUuDb) . (6.9)

Clearly, if
icA and jeB or if ieC and jeb

removal of either of thesc arcs could never result in a feasible
solution, as reconnection would result in the origin assigned to one
vehicle and the destination to another. Only when the vehicle is empty
can an arc feasibly be removed. In order to maintain an equal number of
customers serviced by cach vehicle, both vehicles must become empty at
the same stop number. The likelihood of this occurring is rather small
based on the empirical evidence. Even when such an occurance does

materialized, the interchange is seldom protfitable.

kxtension to 3-optimal. Given the restriction that cach vehicle

must provide service to the same number of customers, there is only one
way three arcs can be feasibly removed. Removal of two arcs from one
tour alters the number of customers served by @ given vehicle.  There-
fore, the arcs must come trom cach of three separate tours, all at the

same vehicle stop number, and with all vehicles empty prior to the break.
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The likelihood of this occurring is even less than with a two arc
removal. Preliminary results suggested the approach was not effective
in solving the multiple vechicle PUDP and was not pursued further. This
is but another cxample of how the precedence relationship of the PUDP
severely limits the effectiveness of hecuristics that otherwise work well

on related problems.

Pair Selection

The pair selection hecuristic identifies the profitability of
assigning each pair of origin/destination pairs to the same vehicle.
Using a savings value computed for each pair of pairs, a group of
customers is eventually identified for each of the V vehicles. Once
the V groups are identified, the problem is reduced to V single vehicle

problems, each solved either optimally or by the 3-optimal heuristic.

Concept, The motivation for the pair selcction heuristic lies in
taking advantage of the requirement to move from an origin to its
corresponding destination. If two customers can he served as cheaply
as one, or nearly so, it appears advantagecous to do so. Figure 16 shows
two origin/destination pairs that can both be serviced for the same
cost as serving the first alone. Therefore, the savings value is
computed to determine how much can be saved by serving two customers

on the same route. This value is termed SAV.

SAV formulas. For any pair of customers taken by themselves there

arc only six ways in which they could be serviced. Suppose both
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Figure 16. Example of how two customers can
be served at the cost of one.
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customers are considered separately, and the only cost for cach is that
from its origin directly to its destination. low much could be saved
by having both customers on the same route? The savings is taken to be
the cost of linking the two origin/destination pairs minus the cost of
separate service. The SAV value, which may be cither positive or
negative, is taken to be the minimum cost of cach of the six possible
service patterns. Table 19 gives the six different reconnection or
service patterns and the savings formulas in FORTRAN symbology for each.
The blank spaces result from costs that appear with both a positive

and a negative sign in the same formula and are thus cancelled out.

Selection procedure. The SAV value that is the most negative

(least positive) identifies the first two origin/destination pairs to

be assigned to a vehicle. The next smallest SAV value identifies the
next two pairs. Provided neither is assigned to the first vehicle, they
are assigned to the second vehicle. If onc had been assigned to the
first vehicle, the other would be also. This would leave the first
vehicle with three assigned customers. With only precedence constraints
binding, this process is continued until at lcast onc customer (origin/

destination pair) is assigned to each of the V vchicles.

Subscquent pair assignment. Once all V vehicles have been assigned

at least one customer, the proccss becomes slightly more complex. Let
I and J represent the next pair to be considered based on the SAV(I,J)
being the minimum of the remaining values. It [ has alrecady been

assigned but J has not, J is assigned to the same vehicle as T is,




TABLE 19

PAIR SELECTION PATTERNS AND
SAVINGS FORMULAS

PATTERN

SAVING FORMULA

(1) I-J-1D-JD
(2) 1-J-JD-1D
(3) 1-1D-J-JD
(4) J-1-JD-1D
(5) J-1-1D-JD
(6, J-JD-1-1D

C(I,d)+C(J, 1) +C(ID, D) -C(I,1D)-C(J,J0)
C(1,.J) +C(JD, ID)-C(1, D)
C(1b,.))
C(J, 1)+C(1,JB)+C(JD,1D)-C(1,1D)-C(J,JID)
CJ,1) +C(1D,JD) -C(J,J0)
C(JD, 1)

NOTE: I, the firs
J, the seco
C(C,*), Cos
ID, I's des
JD, J's des

t origin

nd origin

t or distance from * to *
tination

tination
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provided the vehicle does not already have its full complement of
customers. If I has been assigned to one vehicle and J to another, the
pair is already taken care of by previous assignments. If ncither can
be matched with a vehicle at this time, the pair is held until onc of
the customers is assigned to onc of the V vehicles. Then the other is
assigned to the same vehicle provided that the first customer did not
complete the vehicle's complement. Also, when time windows are present,
it is necessary to insure that each assignment can lead to feasible

individual tours.

Feasibility of assignments. Insuring fecasible tours given the

presence of time windows has been a critical factor in all of the PUDD
heuristics examined. The palr selection procedurce is no exception.
The procedure parallels that used in both the single vehicle cases

and the multiple vehicle casce by greedy sclection. V individual tours
are constructed using the ordering P and then cach tested for
feasibility. The customer or customers being considered for service
by a given vehicle are assigned to that vehicle only it all V of the

tours are feasible.

Interchange leuristic

Concept. Given V feasible individual tours, the interchange
heuristic attempts to identify two customers on different tours that
can be switched so as to reduce the combined cost of the two respective

tours. This is accomplished by first determining for cach customer the
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penalty associated with being on the tour it is on and not on one of
the other tours, and then matching the penalties to find those that

appear to be good candidates for a switch.

Penalty computation. The penalty for origin I and its

corresponding destination ID on tour k not being on tour k' is defined
as the difference between the cost of connecting to this pair in its
present tour and the minimum cost to connect this pair to tour k'.

Let IP(IDP) and IF(IDF) represent the stops directly preceding and
directly following I(ID) in its present tour. Also let J and J' with
J preceding J' represent the closest points to I and ID on tcur k°

respectively. Then the penalty can be computed by

min [C(IP, )*+C(1, 1E)+C(IDD,ID)+C (1D, 101 ;
C(IP,1)+C(1,ID)+C(ID,10P)]

S2(C(1,3)+C(1D,J")] (6.10)

Large penalty values suggest it may be better to have the pair on the

other tour.

Switching pairs. [t would not be practical to attempt all of the

possible switches of two pair. Therefore, switches of the pairs com-
prising the highest four or five penalty values were attempted. ‘The
switch effects a change in the composition of ecach vehicle's customers.
Therefore, the new configurations are optimally solved for both indi-

vidual tours. If the combined tour cost is less after the switch, the

switch becomes permanent and the process repeated.
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Interchange results, The heuristic was tried on scveral problems

ot varying size and complexity. The heuristic very scldom identified
a profitable switch when the initial tours were the optimal routing
obtained from either the greedy or the pair selection procedures.

Consequently, this heuristic was climinated from further consideration.

Computational Results

Because it is much more difficult to obtain optimal solutions for
the multiple vehicle PUDP than it is for the single vehicle version,
only in the casc of very small problems can the heuristics be compared
to the optimal solution. For larger problems, results are limited to
a relative comparison. As in the single vchicle case, the impact of

varying the service paramenters is also investigated.

Heuristics verses optimal. Table 20 presents results from five

sample problems. These data indicate that the pair selection technique
is very cffective for problems of this size. The largest deviation
from optimal was less than 5%. The data also suggests that the greedy
solution followed by optimally sequencing the individual routes is

not cspecially effective. Deviations of greater than 20% arc noted.
However, as will be seen later, this greedy procedure is still superior
to a random assignment of the customers among the vehicles. Also noted
below is the fact that on larger problems with time windows present,
the greedy selection heuristic demonstrates cqual or slightly better

performance when compared to the pair sclection procedure.
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TABLE 20
COMPARISON OF MULTIPLE VEHICLE HEURISTIC
TO THE OPTIMAL SOLUTION VALUES
, , . I GREEDY PAIR
N v OPTIMAL GREEDY SELECTTON SLLLCTTON
17 2 604 918 7354 4
17 2 688 742 T30 T04
7 2 530 746 508 556
13 3 802 1096 974 S02
13 3 794 926 808 808

v et el 4
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Comparison of greedy and pair selection on unconstrained problems.

When there are no time window constraints present, the pair selection
procedure generally produces better results than does the greedy
selection procedure. The data in Table 21 verifies this for ten
problems with 16 customers (N=33) and four vechicles. Only in one
instance (problem 8) was the greedy pair solution better than the pair
selection solution. Only a relatlive comparison 1s possible since

N=33 and V=4 1is too large to be optimally solved by dynamic programming.
Consequently, these results may or may not be anywhere near optimal.

The questions of whether these selection procedures are superior to a

haphazard selection procedure remains to be answered.

Selection comparison on unconstrained problems. Table 22 presents

ten solutions to each of two problems with only precedence constraints
binding. The first and second solutions for cach problem are the
solutions obtained from the «arcedy selection and pair sclection
heuristics respectively. Solutions three through ten represent a random
assignment of four customers to cach of the four vchicles., In all
cases, ecach vehicle is individually optimally routed using the dynamic
programming algorithm. Unqguestionably, both the greedy and pair
selection proccdures produce better results than just randomiy or
haphazardly assigning customers to the vehicles. 1t is also evident
that the key to a good solution for the multiple vehicle PUPE is in the
assignment of customers to the vehicles. This is especially true tfor
those instances that allow tor an optimal scquencing of the assigned

pairs. Such an assignment 1s complicated since there are




. TABLE 2]
f COMPARISON OF GREEDY AND PAIR SELLCTION 1
T TECHNTQUES FOR THE UNCONSTRAINIED
" PUDP, N=33, V=4
b ] s
K PROBLEM GREEDY PAIR PATR SLLECTION
NUMBER SOLUTION SOLUTTON
] 1504 1362
2 1486 1.134
3 1280 1272
. 4 1488 1352
5 1386 1250
0 1500 1390
7 1570 1328
) 8 1194 1306
i 9 1492 1162

1534
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TABLE 22
COMPARTSON OF SOLUTTON VALUES BASED O
DIFFERENT SELECTTON OF CUSTOMERS,
N=33, V=1
SOLHTION PROBLEM ] PROBLEM 2
NUMBER SOLUTION SOLUTTON
1 iGreedy) 1564 1iss
2 (Pair) 1362 113l
3 18041 oo
J 1792 1586
5 1736 [1o
O 1758 1170
7 1730 JIRSRIES
8 1692 15
9 l«\‘ll\ 1(\~ +
10 1706 15338
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[ n
n/v (6.11)
ways to distribute the customers among the Vo vehicles.  For the problems
discussed immediately above this represents
o] o820 (6,12
L)

different possibilities.

Varving service parameters.  The previous discussicn assumed that

only the precedence constraints were binding.,  When time windows are
present as they are in the dial-a-ride service problem, the apparent
superiority ot the pair sclection heuristic disappears.  Tables 25

through 26 present results for 16 customers {N=33

, tour vehieles and

varying values of the quality of service parameters Q and M. fhe
solutions are presented tor three solution methods:  greedy, greedy paiv

selection, and pair selection. Clearly, the individual greedy tours

should be subjected to the optimal or r-cptimal algorithms to mmprove

the initial tour. When the quality of scrvice constraints are tight,
as shown in Tables 23 and 20, the greedy sclection procedure shows g
shight superiority over the parr sclection technigue.  As the con-
strants bocone Toss handing, the preterence swings toward the pair
selectpen tearr s tie s dleserery tor Tarzer problens an the constrained

eiotroc s ent it e et support o cather fenristie being superior
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TABLE 253
COMPARTSON OF SOLUTION VALUES TOR T GRELEDY,
GREEDY PATR AND PATR SELECTTION HEURISTICS,
N=33, V=1, Q=5, M=3
PROBLEM GREEDY GREEDY PATR PATR SELEPCTION
NUMBER SOLUTTON SOLUTTON SOLUTTON
1 1962 a3 * 2001
2 2190 2084 00 2138
3 1893 Fsal 10N
3 19743 [O58 ~ Joa2
5 1900 1S18 ~* 1988
6 18006 |sos ? Jlen
7 2012 2576 25660 ¥
S 2308 28 Jiil
O 1981 1a72 IR O A
10 2000 1o50 ¢ 22600

*Best Solution




TABLE 25

COMPARISON OF SOLUTTON VALUES FOR THE
GREEDY PATR AND PAIR SELECTION HEURESTICS,
V=1, Q=5, M=5

N=33,

GREEDY,

l():»

GREEDY PALR

PAIR SELECTTON

PROBLIM GREEDY
NUMBER SOLUTION SOLUTION SOLUTTON
1 2126 1932 % 1981
2 2036 laon * 205
3 1864 1832 * 1ai1?
4 2120 tgog * 180y
5 1866 1802 * 1950
6 1776 1720 * 109
7 2198 2166 * 2351
8 2280 214 U
9 1918 [ X362 IR
10 2096 20016 ¢ 2164

*Best Solution
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TABLE 25
COMPARISON OF SOLUTION VALUES TOR THE GREEDY,
GREEDY PAIR ASD PAIR SELECTION HEURISTICS,
N=33, V=4, Q=7, M=d
PROBLEM GREEDY GREEDY PAIR PAIR SELECTTON
NUMBLR SOLUTION SOLUTTION SOLUTTON
1 1782 1716 15800
2 1566 1518 1633
3 1988 1740 1518 7
§| [764 1650 TR
5 1668 1024 102 °
o 1588 1538 ¥ 1568
- 1668 1620 1724
8 1614 1526 1is0 *
0 1880 1601 1562 7
10 1772 1654 1621 "

*Best Solution
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e TABLE 206
:j COMPARISON OF SOLUTION VALUES TOR THE GREEDY,
i GREEDY PAIR AND PAIR SELECTION HEURISTICS,
! N=33, V=4, Q=11, M=o
i
’:'1 S s e O
- PROBLEM GREEDY GREEDY PAIR PAIR SELICTION
- NUMBER SOLUTION SOLUTION SOLUTTON
1 2062 1681 1678
2 1518 1462 ° 15060
3 1602 1470 1308
_ 4 1432 1581 IRE S
F 5 1876 1558 © 1584
{ 6 1596 1504 RN
n 1770 1728 1580 *
| 3 . *
: 8 1802 1322 1458
: 9 1751 1621 % 1636
10 1740 1576 1iso ©
*Best Solution
.
.
, |
!
L_
r .
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Performance on larger problems. Tables 27 through 31 present

results for 30 customers and either three or five vehicles. The

results parallel those discussed above. Neither the pair selection nor
the greedy selection produces consistently superior results. When the
constraints are relatively tight, the greedy sclection procedure appears

to produce better results.

Discussion of results, The fact that a greedy-like procedure often

produces the best results is uncomforting. Greedy heuristics seldom
produce the best solutions on other difficult combinatorial problems,
The fact that these solutions cannot be compared to the optimal is also
distressing. ‘Therc is no way of telling the truce effectiveness of
these heuristics on other than very small problems. The pair sclection
heuristic, as developed, and the greedy sclection heuristics may well
be excellent ones. However, it scems likely that a better technique
for determining which customers to assign to what vehicle exists,

What that technique is or what the basis is tor its development are as
vet unanswered questions.  Such questions represent one area tor turther
investigation. This and other areas that appear to offer rescarch
opportunities that cxpand on this work are discussed in the next

chapter.
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k. TABLE 27 :
- COMPARISON OF SOLUTION VALUES FOR THE GREEDY, :
< GREEDY PAIR AND I'AIR SELECTION HEURISTICS, :
o N=61, V=3, Q=5, M=5 1
i
;}; PROBLEM GREEDY GREEDY PATR PAIR SELLCTION :
L NUMBER SOLUTILON SOLUTION SOLUTION ;
e i
1 3696 3040 % 3932
2 3558 3300 * 3824 f
3 3780 3531 7 3036
4 234 3130 7 3238
. 5 3354 3134 © 3310
6 3410 3374 7 3541
7 3036 3032 ¢ 3242
1 8 3505 3108 * 3428
9 3662 3576 3108 7
i 10 3652 5622 * 3940

*Best Solution




TABLE 28

COMPARISON OF SOLUTTON VALUES FOR THE GREEDY,
GREEDY PAIR AND PAIR SELECTTN HEURISTICS,

N=61, V=3, Q=7, M -

PROBLEM

GREEDY
NUMBER SOLUTION

1 2940
2 3230
3 2870
4 3088
5 2902
6 2872
7 2876
8 2708
9 3514
10 3214

GREEDY PAIR PAIR SELECHION

SOLUTION SOLUTTON
2821 " 2838
012 ” 2091
2730 7 2832
2870 2028
2006 7 27T
2668 7 2811
2646 F 2670
572 " 2768
2022 AR IN
2950 2906

*Best Solution

Py
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Y TABLE 29
{l COMPARISON OF SOLUTION VALUES TOR THE GREEDY,
! GREEDY PAIR AND PAIR SELECTION HEURISTICS,
j; N=61, V=3, Q=11, M=6
. E
}{
5. -~ — 1
N PROBLEM GREEDY GREEDY PAIR PAIR SELECTION ]
- - NUMBER SOLUTION SOLUTTON SOLUTION
1 3198 2832 2584 7
2 2984 2736 2708
3 2830 268% ¢ 2858
. 4 2962 2708 ¢ 2830 ]
' 5 2598 2000 7 2304
6 2390 2218 2510
7 2888 2758 2530 7
8 2710 2506 220 0" |
; 9 2946 2738 % 20014 }
1
10 3260 2838 2534 7 :
‘ *Best Solution
r




TABLE 30

COMPARISON OF SOLUTIOW VALULS FFOR THE GRELDY,
GREEDY PAIR AND PAIR SELUCTION HEURISTICS,

N=61, V=3, Q=11,

M=11

PROBLEM

GRELEDY PAIR
SOLUTTON

PAIR SELECTTON
SOLUTION

GREEDY
NUMBER SOLUTION

1 3226

2 2888

3 2984

3 2722

5 2404

0 2728

7 2804

I

8 20206

| 9 2050
10 3198

2820
2702
2758
2612
208941
2462

2698

to

~1

37¢

ro

-
722

2581

2670

* 2784
* 270
* 231
* 2308
* 2728
* 2570
* 3042
2438

*Best Solution
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‘;; TABLE 31
-
- COMPARISON OF SOLUTION VALULS FOR THE GREEDY,
3 GRLEEDY PAIR AND PAIR SELECTION HEURISTICS,
5 N=6l, V=5, Q=7, M=
P
;4‘ PROBIIM GREEDY GREEDY PAIR PAIR SELICTION
NUMBLR SOLUTION SOLUTION SOLUTION
] 2890 2561 % 2810
2 3126 27906 2752 %
3 2782 26070 7 hIAN!
) 4 2064 2860 * 950
| 5 3200 2020 2710 7
O 2558 2452 7 2664
3 7 2862 2752 a2t
n
E 8 3084 2616 * 2690
} i
, Q 3070 2032 2850 7
3
g 10 3240 2090 2Tel ”
3
i o .
; Best Solution
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CLAPTER VI

SUGGLSTED ARLEAS FOR FURTHILR RESEARCH

The work documented in the preceding chapters represents one of
the first attempts to detinc and solve the pichup and delivery problem.
As such, it represents only a first step in that direction. Many
aspects of the problem remain to be investigated. Theretore, this
chapter outlines several rescarch opportunitics that have supgested

themselves during the course of this effort.
. SUMMARY OQF ASPECTS STUDIED

In Chapters I and 111 the PUDP was defined and discussed in its
most general form.  Subscquently, a more restricted form ot the problem
was developed and explored.  Specifically, Chapters [V through VI dealt
with instances of the PUDP where the constraints were expressable in
terms of the stop or sequence number of the vehicle serving a particu-
lar customer. Capacity was assumed to not be a binding constraint,

This allowed for the exact solution of very large single vehicle

problems as well as modest sized multiple vehicle ones. The hearistics
discussed considered the same problem instances in order to have a ]
precise measure of how well a given heuristic performed.  Relaxation

of these restrictions offer the first arca of opportunity.,

B T . . ke
I _ ' . ot




J; . IT. CONSIDERATION OF THL GERNERAL PROBLEM

The most general version of the PUDP is constrained by vehicle
capacity, time windows, quality of service, operational considerations
and of course the precedence requirement. When these constraints
canhot be cxpressed as discussed above, the heuristic techniques
developed herein will not work without moditications. The dynamic
programming algorithm will not work at all in most cases. Conscquently,
exact solutions to the general problem appear doubttul. Therefore,
comparison among heuristics probably will have to be made on a relative

basis.
F1D. QUESTION OF THE EXTISTENCE OF FEASIBILIDY

Given the more general problem, one question that must he addressed
is that of the existence of a teasible route or sct of routes.  Assuming
that an r-optimal heuristic is to be used, the existence of an initial
feasible solution is critical. Finding such a solution may well he an 1
extremely difticult task for those problem instances with relatively

tight constraints. Usc of any tour construction heuristic implicitely

requires a guarantee that a given partial tour can be extended to a

teasible, complete route.  Such o determination was orten coppiicated
for the problems discussed in previous chapters. 1t would appear that
it would be even more complicated in the more general case.  Notwith-

standing, this vepresents the logical next step in studving the Punp.




- IV, MULTIPLLE VEHICLE EXTENSTONS

The multiple vehicle PUDP is much more complex and ditticult to
solve than is the single vehicle PUDPL It also offers the greatest
potential for rescarch. The results of Chapter VI suggest that better

solutions techniques may exist for the multiple vehicle problem.

Vehicle Assignment

Given a good algorithm for solving the single vehicle PUDP, thce
key to a good solution to the multiple vehicle problem lies in the
distribution of the customers among the vehicles.  Although the
techniques discussed is Chapter VI did not perform as well as hopoed, tiwe
busic concept still appears truittul.  That is, obtain a vood inttial
. assignment and then improve the solution by switching customers anony

the vehicles. The problem is in tinding more cotftective technigues

for doing so.

Number Per Vehicle
The results tor the multiple vehicle problem assumed that the
same number of customers would be assigned to cach vehicle.  Such an

assignment may not be the most efficient.  Conscauently, relaxing this

restriction offers anothe  arca for consideration.

Voo POSSTIBLLTIY OF sEACEH PERTODS

In all the cases consitdered, therve were alway s enoupgh costoeg g '

that the vehicle was always in ase. So conadoration was civen toe




case where the vehicle might be idle awarting the carliest t.ome the
next customer could be picked up.  Especially in the dial-a-ride
service problem, such a scenario i1s not unreali=tic and =<hould be
considered. Other possibilities tor slacn periods maght anclude banch

breaks or cotfee breaks tor the drivers.

VL OPERATIONAL CONSTRALNTS

The possibility of limitations on the total time or distance that
a vehicle could be operated is 1 possible constraint that was: not
addressed in Chapter VIO Such operational constraints could appl. 1o
the single vehicle problem, but with optimal or near optimal ~clutio -
possible, imposing them could resalt in no teasible «olutieon.  The <ore
Likely scenario tor op  ttional constraints would be otn the multipic
vehicle problem. foand when more efftfective assiennent and inprosement
procedures gre developed tor the naltiple vehicle problon, constderation
of operational constraints would represent o po-able subscquent
extension.

VL. POSSTRLE BETRISTIONS TaOR THY <10l
VEHICLES pupr

Amyvonunber ot additional heurrstic procedure could be dceioned
end applied to the single vehicle THOED Howeror, fwo hoaristoes 1) o
ta ofter poond potential tor all anstinces of the PV one 1w gn
extension ot the S-optimal hevriatie, while the other ecw the opt e L

solution to o roecaie 1 oprohlen,
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Four and 5-Optimal

For the TSP and the VRP, an r value of 3 in the r-optimal heuristic

was usually the largest value used. The reason is becuase of the
exponential increase in computations as the value of r increasecs.
Consequently, values of r greater than 3 were deemed practical. The
number of reconnection patterns also increases exponentially as the
value of r increases. The same phenomenon is true with the PUDP.
However, due to the precedence constraints of the problem, it may not
be impractical to use larger values of r. This might be accomplished
by only considering those reconnection patterns that offer the highest
probability of obtaining a feasible reconnection. The range of stop
numbers included in each loop might also be limited so as to include ]
only those stops which are most likely to yield a feasible reconnection
pattern. For the 3-optimal solution, this range was taken to be Q
stops. Given the demonstrated superiority of the 3-optimal solution

over the other heuristics tested, a 4 or S-optimal heuristic appears to

be a most fruitful area to investigate.

Optimal Solution to Related Problem

For the general problem where dynamic programming cannot be uscd
to obtain the exact solution, it may be possible to use dynamic
programming to obtain a good solution. This could be accomplished by
approximating the general constraints by stop numbers and then solving

the related problem by the dynamic programming algorithm. If the

resulting solution is feasible to the original problem, onc would
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hopefully have a good solution. If the solution werc not feasible, some

interchange routine would be needed to find a feasible solution with a

minimum of additional cost. Intuitively, this procedure should perform
" well and could be used on either the single vehicle problem or as the

routing portion of a two step solution of the multiple vehicle PUDP.

VIIT. PUDP POTENTIAL

The PUDP is a new problem which is only just beginning to attract

research attention. Given both the complexity of the problem, which
makes obtaining solutions difficult, and the practicality of the
applications, the PUDP should appeal both to the theoretician and to
the practitioner for some time to come. The work documented herein
as well as the few related articles represent only the tip of the 1

iceberg. A great deal remains to be accomplished betore the PUDP can

be considered fully solved.
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